MTH5113 (2023/24): Problem Sheet 7

All coursework should be submitted individually.

- Problems marked "[Marked]" should be submitted and will be marked.

Please submit the completed problem on QMPlus:

- At the portal for Coursework Submission 2.
(1) (Warm-up) For each of the parametric surfaces σ given below and every pair of parameters (u, v) in the domain of σ, compute the following:
(i) $\partial_{1} \sigma(u, v)$ and $\partial_{2} \sigma(u, v)$.
(ii) $\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)$.
(iii) $\left|\partial_{1} \sigma(u, v) \times \partial_{2} \sigma(u, v)\right|$.
(a) Sphere: $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, where $\sigma(u, v)=(\cos u \sin v, \sin u \sin v, \cos v)$.
(b) Torus: $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, where $\sigma(u, v)=((2+\cos u) \cos v,(2+\cos u) \sin v, \sin u)$.
(2) (Warm-up) Determine whether the following parametric surfaces are regular:
(a) Paraboloid:

$$
\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad \sigma(u, v)=\left(u, v, u^{2}+v^{2}\right)
$$

(b) (Polar) $x y$-plane:

$$
\mathbf{P}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad \mathbf{P}(u, v)=(u \cos v, u \sin v, 0)
$$

(c) One-sheeted hyperboloid:

$$
\mathbf{H}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad \mathbf{H}(u, v)=(\cos u \cosh v, \sin u \cosh v, \sinh v)
$$

(3) (Parametrise me!) For each surface S and point $\mathbf{p} \in S$ below, give a parametrisation σ of S such that \mathbf{p} lies in the image of σ.
(a) Plane:

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid y=z\right\}, \quad \mathbf{p}=(1,-4,-4)
$$

(b) Ellipsoid:

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+4 y^{2}+4 z^{2}=4\right\}, \quad \mathbf{p}=(2,0,0)
$$

(c) Gabriel's Horn:

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x>0, y^{2}+z^{2}=\frac{1}{x^{2}}\right\}, \quad \mathbf{p}=\left(1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
$$

(4) [Marked] Consider the following set:

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid\left(3+y^{2}\right)\left(x^{2}+z^{2}\right)=1\right\} .
$$

(a) Show that S is a surface.
(b) Sketch S.
(c) Give a parametrisation of S such that $\left(-\frac{1}{2 \sqrt{2}}, 1, \frac{1}{2 \sqrt{2}}\right)$ lies in the image of S.
(d) Compute the tangent plane to S at $\left(-\frac{1}{2 \sqrt{2}}, 1, \frac{1}{2 \sqrt{2}}\right)$.
(5) [Tutorial] Consider the two-sheeted hyperboloid:

$$
\mathcal{H}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}-z^{2}=-1\right\} .
$$

(a) Show that \mathcal{H} is a surface.
(b) Give a sketch of \mathcal{H}.
(c) Give a parametrisation of \mathcal{H} that passes through the point $(1,-1, \sqrt{3})$.
(d) Compute the tangent plane to \mathcal{H} at the point $(1,-1, \sqrt{3})$.
(6) (Let's be self-sufficient) For each of the following surfaces S and points $\mathbf{p} \in S$:
(i) Show that S is a surface.
(ii) Compute the tangent plane to S at \mathbf{p}.
(Unlike in Questions (4) and (5), you are not given a parametrisation of S. You will have to find your own in order to compute the tangent plane.)
(a) Hyperbolic paraboloid:

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=y z\right\}, \quad p=(-6,2,-3)
$$

(b) Cylinder:

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+z^{2}=9\right\}, \quad \mathbf{p}=\left(-\frac{3}{\sqrt{2}}, 7, \frac{3}{\sqrt{2}}\right)
$$

(7) (Surfaces of revolution) Let $\mathrm{f}:(\mathrm{a}, \mathrm{b}) \rightarrow \mathbb{R}$ be a smooth function satisfying $\mathrm{f}(\mathrm{x})>0$ for every $x \in(a, b)$. From f, we can then define the set

$$
\mathcal{R}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid a<x<b, y^{2}+z^{2}=[f(x)]^{2}\right\}
$$

In particular, \mathcal{R} is the surface of revolution obtained by taking the graph of f (in the $x y$ plane) and rotating it (in 3-dimensional space) around the x-axis.
(a) Show that \mathcal{R} is indeed a surface.
(b) Give a parametrisation of \mathcal{R} whose image is all of \mathcal{R}.
(c) Compute the tangent plane to \mathcal{R} at the point $(x, 0, f(x))$, for any $x \in(a, b)$.
(8) (Fun with stereographic projections) Consider the parametric surface

$$
\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad \sigma(u, v)=\mathbf{p}
$$

where \mathbf{p} is the (unique) point of $\mathbb{S}^{2} \backslash\{(0,0,1)\}$ that lies on the line through the points $(u, v, 0)$ and $(0,0,1)$. (The function σ is called the inverse stereographic projection.)
(a) Show that σ can be described by the formula

$$
\sigma(u, v)=\left(\frac{2 u}{1+u^{2}+v^{2}}, \frac{2 v}{1+u^{2}+v^{2}}, \frac{-1+u^{2}+v^{2}}{1+u^{2}+v^{2}}\right), \quad(u, v) \in \mathbb{R}^{2}
$$

(b) Show that σ is both injective and regular.
(c) Show that the image of σ is precisely $\mathbb{S}^{2} \backslash\{(0,0,1)\}$.
(d) Use your knowledge of σ to construct the sphere \mathbb{S}^{2} using only two regular and injective parametric surfaces.

