MTH5113 (2023/24): Problem Sheet 7

All coursework should be submitted individually.

• Problems marked "[Marked]" should be submitted and will be marked.

Please submit the completed problem on QMPlus:

- At the portal for Coursework Submission 2.
- (1) (Warm-up) For each of the parametric surfaces σ given below and every pair of parameters $(\mathfrak{u}, \mathfrak{v})$ in the domain of σ , compute the following:
 - (i) $\partial_1 \sigma(u, v)$ and $\partial_2 \sigma(u, v)$.
 - (ii) $\partial_1 \sigma(\mathfrak{u}, \mathfrak{v}) \times \partial_2 \sigma(\mathfrak{u}, \mathfrak{v})$.
- (iii) $|\partial_1 \sigma(u, v) \times \partial_2 \sigma(u, v)|$.
- (a) Sphere: $\sigma: \mathbb{R}^2 \to \mathbb{R}^3$, where $\sigma(\mathfrak{u}, \mathfrak{v}) = (\cos \mathfrak{u} \sin \mathfrak{v}, \sin \mathfrak{u} \sin \mathfrak{v}, \cos \mathfrak{v})$.
- $\text{(b)} \ \ \textit{Torus:} \ \ \sigma: \mathbb{R}^2 \to \mathbb{R}^3, \ \text{where} \ \ \sigma(u,\nu) = ((2+\cos u)\cos \nu, \ (2+\cos u)\sin \nu, \sin u).$
- (2) (Warm-up) Determine whether the following parametric surfaces are regular:
 - (a) Paraboloid:

$$\sigma: \mathbb{R}^2 \to \mathbb{R}^3, \qquad \sigma(\mathfrak{u}, \mathfrak{v}) = (\mathfrak{u}, \mathfrak{v}, \mathfrak{u}^2 + \mathfrak{v}^2).$$

(b) (Polar) xy-plane:

$$\mathbf{P}: \mathbb{R}^2 \to \mathbb{R}^3, \qquad \mathbf{P}(\mathfrak{u}, \mathfrak{v}) = (\mathfrak{u} \cos \mathfrak{v}, \, \mathfrak{u} \sin \mathfrak{v}, \, \mathfrak{0}).$$

(c) One-sheeted hyperboloid:

$$\mathbf{H}:\mathbb{R}^2\to\mathbb{R}^3,\qquad \mathbf{H}(\mathfrak{u},\nu)=(\cos\mathfrak{u}\cosh\nu,\,\sin\mathfrak{u}\cosh\nu,\,\sinh\nu).$$

(3) (Parametrise me!) For each surface S and point $\mathbf{p} \in S$ below, give a parametrisation σ of S such that \mathbf{p} lies in the image of σ .

(a) Plane:

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid y = z\}, \quad p = (1, -4, -4).$$

(b) *Ellipsoid:*

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + 4y^2 + 4z^2 = 4\}, \quad \mathbf{p} = (2, 0, 0).$$

(c) Gabriel's Horn:

$$S = \left\{ (x, y, z) \in \mathbb{R}^3 \mid x > 0, \ y^2 + z^2 = \frac{1}{x^2} \right\}, \qquad \mathbf{p} = \left(1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right).$$

(4) [Marked] Consider the following set:

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid (3 + y^2) (x^2 + z^2) = 1\}.$$

- (a) Show that S is a surface.
- (b) Sketch S.
- (c) Give a parametrisation of S such that $\left(-\frac{1}{2\sqrt{2}},1,\frac{1}{2\sqrt{2}}\right)$ lies in the image of S.
- (d) Compute the tangent plane to S at $\left(-\frac{1}{2\sqrt{2}}, 1, \frac{1}{2\sqrt{2}}\right)$.
- (5) [Tutorial] Consider the two-sheeted hyperboloid:

$$\mathcal{H} = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - z^2 = -1\}.$$

- (a) Show that \mathcal{H} is a surface.
- (b) Give a sketch of \mathcal{H} .
- (c) Give a parametrisation of \mathcal{H} that passes through the point $(1,-1,\sqrt{3})$.
- (d) Compute the tangent plane to \mathcal{H} at the point $(1,-1,\sqrt{3})$.
- (6) (Let's be self-sufficient) For each of the following surfaces S and points $p \in S$:
 - (i) Show that S is a surface.
 - (ii) Compute the tangent plane to S at p.

(Unlike in Questions (4) and (5), you are not given a parametrisation of S. You will have to find your own in order to compute the tangent plane.)

(a) Hyperbolic paraboloid:

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x = yz\}, \quad p = (-6, 2, -3).$$

(b) Cylinder:

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + z^2 = 9\}, \quad \mathbf{p} = \left(-\frac{3}{\sqrt{2}}, 7, \frac{3}{\sqrt{2}}\right).$$

(7) (Surfaces of revolution) Let $f:(a,b)\to\mathbb{R}$ be a smooth function satisfying f(x)>0 for every $x\in(a,b)$. From f, we can then define the set

$$\mathcal{R} = \{(x, y, z) \in \mathbb{R}^3 \mid \alpha < x < b, \ y^2 + z^2 = [f(x)]^2\}.$$

In particular, \mathcal{R} is the *surface of revolution* obtained by taking the graph of f (in the xy-plane) and rotating it (in 3-dimensional space) around the x-axis.

- (a) Show that \mathcal{R} is indeed a surface.
- (b) Give a parametrisation of \mathcal{R} whose image is all of \mathcal{R} .
- (c) Compute the tangent plane to \mathcal{R} at the point (x,0,f(x)), for any $x \in (a,b)$.
- (8) (Fun with stereographic projections) Consider the parametric surface

$$\sigma: \mathbb{R}^2 \to \mathbb{R}^3, \qquad \sigma(\mathfrak{u}, \mathfrak{v}) = \mathbf{p},$$

where **p** is the (unique) point of $\mathbb{S}^2 \setminus \{(0,0,1)\}$ that lies on the line through the points (u,v,0) and (0,0,1). (The function σ is called the *inverse stereographic projection*.)

(a) Show that σ can be described by the formula

$$\sigma(u,v) = \left(\frac{2u}{1+u^2+v^2}, \frac{2v}{1+u^2+v^2}, \frac{-1+u^2+v^2}{1+u^2+v^2}\right), \qquad (u,v) \in \mathbb{R}^2.$$

(b) Show that σ is both injective and regular.

- (c) Show that the image of σ is precisely $\mathbb{S}^2 \setminus \{(0,0,1)\}.$
- (d) Use your knowledge of σ to construct the sphere \mathbb{S}^2 using only two regular and injective parametric surfaces.