
MTH5131 Actuarial Statistics
Coursework 3 — Solutions

Exercise 1. 1. Let X be the number of claims received in a week. To determine the posterior
distribution of µ, we must calculate the conditional probabilities P (µ = 8|X = 7), P (µ =
10|X = 7), and P (µ = 12|X = 7),. The first of these is

P (µ = 8|X = 7) =
P (µ = 8, X = 7)

P (X = 7)
=
P (X = 7|µ = 8)P (µ = 8)

P (X = 7)

Since X ∼ Poisson(µ),

P (X = 7|µ = 8) =
e−887

7!

and since the prior distribution is uniform on the integers 8, 10 and 12:

P (µ = 8) =
1

3
.

So

P (µ = 8|X = 7) =
e−887

7!
× 1

3

P (X = 7)
=

0.04653

P (X = 7)

Similarly,

P (µ = 10|X = 7) =
P (X = 7|µ = 10)P (µ = 10)

P (X = 7)
=

e−10107

7!
× 1

3

P (X = 7)
=

0.03003

P (X = 7)

and

P (µ = 12|X = 7) =
P (X = 7|µ = 12)P (µ = 12)

P (X = 7)
=

e−12127

7!
× 1

3

P (X = 7)
=

0.01456

P (X = 7)

Since these conditional probabilities must sum to 1, the denominator must be the sum of the
numerators, so

P (X = 7) = 0.04653 + 0.03003 + 0.01456 = 0.09112

The posterior probabilities are:

P (µ = 8|X = 7) =
0.04653

0.09112
= 0.51066

P (µ = 10|X = 7) =
0.03003

0.09112
= 0.32954

P (µ = 12|X = 7) =
0.01456

0.09112
= 0.15980

2. The Bayesian estimate under squared error loss is the mean of the posterior distribution:

8× 0.51066 + 10× 0.32954 + 12× 0.15980 = 9.29830
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Exercise 2. 1. Since the prior distribution of p is Beta(4,4):

f(p) ∝ p3(1− p)3

Now let X denote the number of successes from a sample of size n. Then X ∼ Binomial(n, p).
Since x successes have been observed, the likelihood function is:

L(p) = P (X = x) =

(
n

x

)
px(1− p)n−x ∝ px(1− p)n−x

Combining the prior PDF with the likelihood function gives:

f(p|x) ∝ p3(1− p)3 × px(1− p)n−x = px+3(1− p)n−x+3

Comparing this with the PDF of the Beta distribution, we see that the posterior distribution
of p is Beta(x+ 4, n− x+ 4).

The Bayesian estimate under all-or-nothing loss is the mode of the posterior distribution, ie the
value of p that maximises the posterior PDF. To find the mode, we need to differentiate the PDF
(or equivalently differentiate the log of the PDF) and equate it to zero.

Given that x = 10 and n = 25, the posterior of p is Beta (15,18) and:

f(p|x) = Cp14(1− p)17.

Taking logs (to make the differentiation easier):

ln f(p|x) = lnC + 14 ln p+ 17(1− p)

Differentiating gives
d

dp
ln f(p|x) = 14

p
− 17

1− p
The derivative is equal to 0 when

14(1− p) = 17p

or

p =
14

31

Differentiating again gives:

d2

dp2
ln f(p|x) = −14

p2
− 17

(1− p)2
< 0

and therefore we have found a maximum.
So the Bayesian estimate of p under all-or-nothing loss is 14

P31
or 0.45161

Exercise 3. 1. The likelihood function is:

L(µ) =
1

µ
e−

x1
µ × · · · × 1

µ
e−

xn
µ =

e
−

∑
xi

µ

µn

2. The posterior distribution is given by:

f(µ|x) ∝
e− θ

µ

µα+1
×
e−

∑
xi
µ

µn
=
e− (θ+

∑
xi)

µ

µn+α+1
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We see that this is the same form as the prior distribution but with different paramters.
So we have the same distribution as before but with parameters:

θ∗ = θ +
∑

xi

and

α∗ = n+ α

We can now use the formula for the mean of the distribution given in the question:

E(µ) =
θ∗

α∗ − 1
=

θ +
∑
xi

n+ α− 1

This is the Bayesian estimate for µ under squared error loss.

3. Credibility estimate

µ̂ =
θ +

∑
xi

n+ α− 1
=

θ

n+ α− 1
+

∑
xi

n+ α− 1

=
θ

α− 1
× α− 1

n+ α− 1
+

∑
xi
n
× n

n+ α− 1

This is in the form of a credibility estimate with:

Z =
n

n+ α− 1

4. Posterior estimate
We now have:

µ̂ =
θ +

∑
xi

n+ α− 1
=

40 + 9826

100 + 1.5− 1
= 98.1692

The value of the credibility factor is:

Z =
n

n+ α− 1
=

100

100 + 1.5− 1
= 0.9950

5. Comments
We see that the value of Z is very close to 1.
This means we are placing almost full weight on our sample mean and take little account of
our prior mean.
This is because n is much bigger than α.
We would use a prior like this if we are not very sure initially about the true value of µ.
We have chosen a prior distribution with a large variance, to reflect our high initial degree of
uncertainty about µ.

Exercise 4. The prior is ∝ 1 and the likelihood is ∝ exp
(
− (1−θ)2

2

)
, so the posterior is ∝

exp
(
− (1−θ)2

2

)
. We conclude that the posterior is θ ∼ N(1, 1). Therefore P (θ > 0) = 0.8413

or about 84%. But the observation is consistent with random noise, e.g. N(0, 1). This is an
argument against uninformative priors.
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Exercise 5. 1. Assuming α = 100, β = 1:

(a) -

Year Number Z at the X =average number of claims At the start of the year,
of Claims start of year based on number of years the credibility estimate of the

of past data available number of claims in the coming year
at the start of year = ZX + (1− Z)µ

1 144 0.000 0.000 100.000
2 144 0.500 144.000 122.000
3 174 0.667 144.000 129.333
4 148 0.750 154.000 140.500
5 151 0.800 152.500 142.000
6 156 0.833 152.200 143.500
7 168 0.857 152.833 145.286
8 147 0.875 155.000 148.125
9 140 0.899 154.000 148.000

10 161 0.900 152.444 147.200

Hint: For the Poisson/Gamma model, in the formula for the credibility factor Z =
n/(n+ β), n should be taken as the number of years of past data.

(b) -

(c) We can see from the graph that the credibility factor increases with time. This fits with
our previous comments that as time goes by and more data is collected from the risk
itself, then the higher should be the credibility factor. This allows for the increasing
reliability of the data in estimating the true but unknown expected number of claims for
the risk.
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(d) -

(e) The initial estimate of claims is 100, this being the mean of the prior distribution of λ.

However, this turns out to be a very poor estimate since all of the actual claim numbers
are around 150 and none, in the first ten years, is lower than 140.

We can see the estimated number of claims increasing with time until it reaches the level
of the actual claim numbers after 8 years.

This increase is due to progressively more weight (credibility) being given to the data
from the risk itself and correspondingly less weight being given to the collateral data (the
prior distribution of λ).
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2. Assuming α = 500, β = 5:

(a) -

Year Number Z at the X =average number of claims At the start of the year,
of Claims start of year based on number of years the credibility estimate of the

of past data available number of claims in the coming year
at the start of year = ZX + (1− Z)µ

1 144 0.000 0.000 100.000
2 144 0.167 144.000 107.333
3 174 0.286 144.000 112.571
4 148 0.375 154.000 120.250
5 151 0.444 152.500 123.333
6 156 0.500 152.200 126.100
7 168 0.545 152.833 128.818
8 147 0.583 155.000 132.083
9 140 0.615 154.000 133.231

10 161 0.643 152.444 133.714

(b) -

(c) -
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(d) We can see that both prior distributions Gamma(100,1) and Gamma(500,5) give an
increasing credibility factor and the same general features.

However, the most obvious difference is that for the Gamma(500,5) prior the credibility
factor increases more slowly.

The mean of both distributions is the same, 100.

This represents the initial credibility estimate of the number of claims for both prior
distributions.

However, the standard deviation is lower for the Gamma(500,5) prior at (500/52)0.5 =
4.472 than for the Gamma(100,1) prior at (100/12)0.5 = 10.

The size of the standard deviation of the prior distribution can be interpreted as an
indication of how much confidence is placed in the initial estimate of the number of
claims.

The smaller the standard deviation of the prior distribution, the more reliable this initial
estimate is believed to be.

Since, in Bayesian credibility, the prior distribution represents the collateral data, the
above statement can be expressed as “the smaller the standard deviation of the prior
distribution, the more relevant the collateral data are considered to be”.

Given this interpretation, a smaller standard deviation for the prior distribution would be
expected to result in a lower credibility factor.

Exercise 6. The prior is

f(θ) =
1√
2πσ2

exp

[
−1

2

(
θ − µ
σ2

)2
]
∝ exp

[
−1

2

(
θ − µ
σ2

)2
]

The likelihood is

n∏
i=1

1√
2πσ1

exp

[
−1

2

(
xi − θ
σ1

)2
]
∝ exp

[
−1

2

n∑
i=1

(
xi − θ
σ1

)2
]

Therefore, the posterior is proportional to

f(θ|y) = exp

[
−1

2

(
θ − µ
σ2

)2
]
× exp

[
−1

2

n∑
i=1

(
xi − θ
σ1

)2
]

= exp

[
−1

2

[(
θ − µ
σ2

)2

+
n∑
i=1

(
xi − θ
σ1

)2
]]

We will prove that

f(θ|y) ∝ exp

[
−1

2

(
θ − µ∗

σ∗

)2
]

for some µ∗, σ∗ to be determined. This will imply that the posterior is N(µ∗, σ
2
∗). Because of the

∝ sign, terms not involving θ are unimportant. We have(
θ − µ∗

σ∗

)2

=

(
θ − µ
σ2

)2

+
n∑
i=1

(
xi − θ
σ1

)2

+ C

for a constant C. Equating the coefficients of θ2 on both sides gives

1

σ2
∗
=

1

σ2
2

+
n

σ2
1

(1)
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and equating coefficients of θ gives

µ∗

σ2
∗
=

µ

σ2
2

+

∑n
i=1 xi
σ2
1

=
µ

σ2
2

+
nx

σ2
1

(2)

It follows from (1) that

σ2
∗ =

σ2
1σ

2
2

σ2
1 + nσ2

2

(3)

Multiplying (2) by (3) produces

µ∗ =
µσ2

1 + nxσ2
2

σ2
1 + nσ2

2
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