

MTH793P Coursework 7 Advanced Machine Learning, Semester B, 2023/24

Principal Component Analysis (PCA)

1. Consider the set of points in the plane:

$$x_1 = (4,3)^T$$
, $x_2 = (-4,6)^T$, $x_3 = (7,-2)^T$, $x_4 = (1,1)^T$, $x_5 = (0,-2)^T$

- (a) Set up a corresponding data matrix $X \in \mathbb{R}^{2 \times 5}$.
- (b) Find the principal components of *X* (remember to center the data points first).
- (c) Compute the projections $y_1, \ldots, y_5 \in \mathbb{R}^1$ of $x_1, \ldots, x_5 \in \mathbb{R}^2$ on the first principal component (remember to correct for the mean).
- (d) Compute the reconstructions of x_1, \ldots, x_5 using the first principal components, denoted $\hat{x}_1, \ldots, \hat{x}_5 \in \mathbb{R}^2$.
- (e) In a 2D axis system, plot the following:
 - The original points x_1, \ldots, x_5 .
 - The reconstruced points $\hat{x}_1, \ldots, \hat{x}_5$.
 - The principal components (directions).
- 2. Consider the following points in \mathbb{R}^5 :

$$x_1 = (2, 3, 1, 0, -1)^T, x_2 = (-4, 2, 4, 4, 1)^T, x_3 = (-1, -1, 3, 9, 0)^T$$

Find the projections $y_1, y_2, y_3 \in \mathbb{R}^2$ of these points, that makes them uncorrelated and with maximal variance (remember to center the points first).