MTH793P
Advanced Machine Learning, Semester B, 2023/24
Coursework 7

Principal Component Analysis (PCA)

1. Consider the set of points in the plane:

$$
x_{1}=(4,3)^{T}, x_{2}=(-4,6)^{T}, x_{3}=(7,-2)^{T}, x_{4}=(1,1)^{T}, x_{5}=(0,-2)^{T}
$$

(a) Set up a corresponding data matrix $X \in \mathbb{R}^{2 \times 5}$.
(b) Find the principal components of X (remember to center the data points first).
(c) Compute the projections $y_{1}, \ldots, y_{5} \in \mathbb{R}^{1}$ of $x_{1}, \ldots, x_{5} \in \mathbb{R}^{2}$ on the first principal component (remember to correct for the mean).
(d) Compute the reconstructions of x_{1}, \ldots, x_{5} using the first principal components, denoted $\hat{x}_{1}, \ldots, \hat{x}_{5} \in \mathbb{R}^{2}$.
(e) In a 2D axis system, plot the following:

- The original points x_{1}, \ldots, x_{5}.
- The reconstruced points $\hat{x}_{1}, \ldots, \hat{x}_{5}$.
- The principal components (directions).

2. Consider the following points in \mathbb{R}^{5} :

$$
x_{1}=(2,3,1,0,-1)^{T}, x_{2}=(-4,2,4,4,1)^{T}, x_{3}=(-1,-1,3,9,0)^{T} .
$$

Find the projections $y_{1}, y_{2}, y_{3} \in \mathbb{R}^{2}$ of these points, that makes them uncorrelated and with maximal variance (remember to center the points first).

