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Topics we have covered so far in this 
Statistical Modelling module
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1
• Principles of statistical modelling

2
• The Simple Linear Regression Model

3
• Least Squares estimation

4
• Properties of estimators

5
• Assessing the model

6
• Inference about the model parameters

7
• Matrix approaches to simple linear regression

8
• Maximum Likelihood Estimation



Modelling more complex relationships 
between variables

Simple 
Linear 

Regression

Multiple 
Linear 

Regression
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Simple Linear Regression isn’t the end

Whenever we model using Simple Linear Regression some of the variability in 
the response (𝑦𝑖) is left unexplained

▪ R2 is less than 100%

▪ there can be a number of different reasons for this

▪ one reason might be that there is more than one explanatory variable we need 
to take account of to better understand the response

▪ this leads to Multiple Linear Regression models
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2 explanatory variables

▪ with 2 explanatory variables X1 and X2 and a response variable Y

i = 1, 2, …, n observations of the form ( x1i ,  x2i , yi )

▪ the multiple linear regression model here is

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝜀𝑖
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More generally

model with p – 1 explanatory variables X1 , X2 , … , Xp-1 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 +⋯+ 𝛽𝑝−1𝑥𝑝−1 𝑖 + 𝜀𝑖

𝑣𝑎𝑟 𝜀𝑖 = 𝜎2 for all i = 1, …, n

𝑐𝑜𝑣 𝜀𝑖 , 𝜀𝑗 = 0 for all i ≠ j
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Can also be written as

model with p – 1 explanatory variables X1 , X2 , … , Xp-1

𝐸 𝑦𝑖 = 𝜇𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 +⋯+ 𝛽𝑝−1𝑥𝑝−1 𝑖

𝑣𝑎𝑟 𝑦𝑖 = 𝜎2 for all i = 1, …, n

𝑐𝑜𝑣 𝑦𝑖 , 𝑦𝑗 = 0 for all i ≠ j

This is an equivalent way of writing the same multiple linear regression model
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Normal linear regression

We usually have the additional assumption of the normal distribution

Can be written as

𝑦𝑖 ~ 𝑁(𝜇𝑖 , 𝜎
2)

or 

𝜀𝑖 ~ 𝑁(0, 𝜎2)
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Matrix form

Y = X 𝛃 + 𝜀
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𝒀 =

𝑦1
⋮
𝑦𝑛

the vector of responses

𝜷 =

𝛽0
⋮

𝛽𝑝−1

the vector of parameters

𝑿 =

1 𝑥1,1 …

⋮ ⋮ …
1 𝑥1,𝑛 …

𝑥𝑝−1,1
⋮

𝑥𝑝−1𝑛
the design matrix

𝜀 =

𝜀1
⋮
𝜀𝑛

the vector of random errors



3 reasons we might be interested in 
multiple linear regression

A
• Improve a simple linear regression model

B
• We know there is a multi-variable relationship

C
• We don’t know which variables are explanatory

10



Least squares estimation

Algebraically it is easier to work with the matrix form

Here we seek estimates for the elements of vector 𝜷

We will find that the results are very similar to those for the simple linear 
regression model

Our approach is to minimise the sums of squares of residuals
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Sum of squares of residuals

We seek parameter estimates that minimise S(𝜷) where

𝑆 𝜷 = σ𝑖=1
𝑛 (𝑦𝑖 − (𝛽0 + 𝛽1𝑥1𝑖 +⋯+ 𝛽𝑝−1𝑥𝑝−1 𝑖))
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Alternatively written as

𝑆 𝜷 = σ𝑖=1
𝑛 𝜀𝑖

2

Or in vector form

𝑆 𝜷 = 𝜀𝑇𝜀
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Least squares estimators

We know from our matrix work in weeks 5 and 6 that the least squares 
estimators here are in the form

෡𝜷 = (𝑿𝑻𝑿)−1𝑿𝑻𝒚

This is the same result as for the simple linear regression model except 
that then the matrix X had 2 columns whereas now the identity matrix X
has p columns for p – 1 explanatory variables (and p beta parameters)
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Properties of the least squares 
estimators

Again these flow from our work on the simple linear regression model

• ෡𝜷 is an unbiased estimator for𝜷

• Var[෡𝜷] = 𝜎2 (𝑿𝑻𝑿)−1

• If Y = X 𝛃 + 𝜀 with 𝜀 ~ 𝑁(0, 𝜎2𝑰) then ෡𝜷 ~ 𝑁(𝜷, 𝜎2 𝑿𝑻𝑿
−1
)
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Fitted values and hat matrix

In finding the vector of fitted values ෡𝒀 we can use the hat matrix H where

෡𝒀 = 𝑿෡𝜷 = 𝑿(𝑿𝑻𝑿)−𝟏𝑿𝑻𝒀 = 𝑯𝒀

where

𝑯 = 𝑿(𝑿𝑻𝑿)−𝟏𝑿𝑻
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Residuals in multiple linear regression

𝒆 = 𝒀 − ෡𝒀 = 𝒀 −𝑯𝒀 = 𝑰 − 𝑯 𝒀

With

𝐸 𝒆 = 0

𝑣𝑎𝑟 𝒆 = 𝜎2(𝑰 − 𝑯)

The sum of the elements in 𝒆 is zero as before

The sum of squares of residuals in matrix form is 𝒆𝑻𝒆 = 𝒀𝑻 𝑰 − 𝑯 𝒀
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Multiple linear regression in R

We will spend more time on this in the forthcoming IT labs

But again multiple linear regression model building and analysis is a 
straightforward extension of simple linear regression in R

Response variable observations in vector y

If we have four explanatory variables with their observations in vectors

x1 x2 x3 x4
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Multiple linear regression in R

To construct the multiple linear regression in an R object called mlrm (for 
example) and then display the results

mlrm <- lm(y ~ x1 + x2 + x3 + x4)

summary(mlrm)

To calculate the fitted values and store them as yhat and the standardised 
residuals and store them as d

yhat <- fitted(mlrm)

d <- rstandard(mlrm)
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