Fields
Recall from to lost lactuin
Theram 2l If ($R,+, x$)
is a Figg with ielartity,
tem $\left(R^{x}, x\right)$ is a groue
Det A field is a commanation ring

$$
\left(F_{1}+, x\right)
$$

satistying the axions
(- $\left(F_{1}+1\right.$ is an abelian group with identity element " 0 ")

- $(F-\{0\}, X)$ is an abelian. group beculra with identity element F is "1" a commutative
- $0 \neq 1$ Hing

It might bo useful to spell out the field axioms explicitly cs follows
A field $(F,+x)$ iss a set with acdition + \& cmultalicition x
\$.t.
-

$$
\begin{aligned}
&(R+0)-(R+4) \\
& \Rightarrow(F, t) \text { is andelian } \\
& \text { gowe? }
\end{aligned}
$$

- $(R \times 0)(R \times 1)(R y+)(R+x)$

$$
\begin{aligned}
& \Rightarrow\left(F_{1}+, x\right) \\
& \text { is a ating }
\end{aligned}
$$

- $\forall a, b \in F \quad a b=b a$
\uparrow
$a \times b$

$$
\Rightarrow\left(F_{1}+, X\right)
$$

is a commentation fing

- There exists an element " 1 " in F s.t. $\forall a \in F$

$$
\begin{aligned}
a \cdot 1 & =1 \cdot a=a \\
& \Rightarrow\left(F_{1}+, X\right)
\end{aligned}
$$

is a conomontatice ting with Zantity

- for ${ }^{\forall} a \in F-\{0\}$.
theine exists an element $b \in F$ \uparrow sit. $a b=b a=1$.

$$
F-\{0\}=F^{x}
$$

$1 \Rightarrow(F-\{6\}, x)$ is an ablian group)

Examples

$$
\text { If } \frac{r}{s} \in Q-\{0\rangle \text {. }
$$

- \mathbb{Q} the $\$ \neq 0, r \neq 0$
$\Rightarrow \frac{r}{s}$ his te multiplication indole $\frac{s}{r}$.
- \mathbb{R} If $r \in \mathbb{R}-\{d$,

$$
\Rightarrow \quad \frac{1}{r} \text { is tivmitipiction }
$$ inks r.

- \mathbb{Z} is not a field.

It is a cormmatativo ting but not all non-zew elements have multiplicative inverse!

For example. 2 does not hale multiplication inverse! $\frac{1}{2}$ is NT I an intruder.

Recall from earlier. If P is a prime number,

$$
\left(Z p_{1}+x\right) \cdot[a]+[b]=[a+b]
$$

a commatative Fing, $[a][b]=[a b]$ with identity (1)
Chim $\left(Z_{p}, t, x\right)$ is a field ${ }^{11}{ }^{1}$
Need to chack - $[0] \neq[1]$

- $\left(Z_{p}-\{[0]\}, x\right)$
is an abelian group.
Firstly $[0] \neq[1]$.

If they were equal, then
$[f]_{p}=[b]_{\rho} \quad[0]=[1]$ \& $p \mid(n-b) \Rightarrow P$ wound have to divide 1 .
\Rightarrow This can NJ happen
sine prime numbers ave ≥ 2.
The hardest thins to check:
let $[a] \in \mathbb{Z}_{p}-\{[0]\}$
Sine $[a] \neq[0], \quad P$ closes not divide a.

$$
\Rightarrow \operatorname{gcd}(a, p)=1
$$

$\Rightarrow \quad[a]$ has mattiplicatio incerse! Thewam 12

- $\mathbb{C}:=$ to set od camplex numbers.

Define "t"

$$
(a+b \sqrt{-1})+(c+d \sqrt{-1})
$$

$$
\begin{aligned}
& =(a+c)+(b+d) \sqrt{-1} \\
& \text { \& "x" } \\
& (a+b \sqrt{-1})(c+d \sqrt{-1}) \\
& =(a c+b c \sqrt{-1}+a d \sqrt{-1} \\
& +\left(b d(\sqrt{-1})^{2}\right) \\
& =(a c-b d)+(a d+b c) \sqrt{-1}
\end{aligned}
$$

Exeries (Examil Shet)
$\left(\mathbb{C}_{1}, X\right)$ is a comomatatio Fing with icentity

$$
\begin{gathered}
1 \\
1+0 \sqrt{-1}
\end{gathered}
$$

Fuercise Check thet

$$
(C-\{0\}, X) \text { is a group. }
$$

(GO) Gien $a+b \sqrt{-1} \Rightarrow(a, b) \neq(0,0)$

$$
\begin{aligned}
& \sim \mathcal{C} \in\{0\} \text {, } \\
& \underset{\sim}{c+d \sqrt{-1}} \Rightarrow(c, d) \neq(0,0) \\
& (a c-b d)+(a d+b c) \sqrt{-1} \in \mathbb{C}
\end{aligned}
$$

Is this really men-zelo??
Exercised: Why?

$$
\begin{aligned}
& \left(\begin{array} { l }
{ (G - 1) } \\
{ (a + b \sqrt { - 1 }) }
\end{array} \left({ }^{(c+d \sqrt{-1}) \cdot(e+f \sqrt{-1}))}\right.\right. \\
& ((a+b \sqrt{-1})) \overbrace{(c+d \sqrt{-1})) \mid}^{(c a-d t)+(c t+d e) \sqrt{-1}} \\
& (a(c a-d f)-b(c f+d e))^{E} \\
& +(a(c f+d e)+b(c e-d f))^{f-}
\end{aligned}
$$

$(G 2) \quad 1=1+0 \sqrt{-1}$
is th icuntity element wirit

$$
X
$$

Indeed,

$$
\begin{aligned}
(a+b \sqrt{-1}) & \cdot(1+0 \sqrt{-1}) \\
& =(a \cdot 1-b \cdot 0)+(a \cdot 0 \\
& =a+b \cdot 1)^{(-1} \\
& =a \sqrt{-1}
\end{aligned}
$$

Simidaly

$$
(1+0 \sqrt{-1})(a+b \sqrt{-1})=a+b \sqrt{-1}
$$

(GB) The inverse of $a+b l-1$ is

$$
\frac{a}{a^{2}+b^{2}}+\frac{(-b)}{a^{2}+b^{2}} \sqrt{-1}
$$

Inded.

$$
\left.\begin{array}{rl}
(a+b \sqrt{-1})\left(\frac{a}{a^{2}+b^{2}}\right. & \left.+\frac{(-b)}{a^{2}+b^{2}} \sqrt{-1}\right) \\
& =(\text { (funmala) })
\end{array}\right\} \begin{aligned}
& \left(\frac{a}{a^{2}+b^{2}}+\frac{(-b)}{a^{2}+b^{2}} \sqrt{-1}\right)(a+b \sqrt{-1})
\end{aligned}
$$

It is wRONE to compule

$$
\left[\begin{array}{rl}
{\left[\frac{1}{a+b \sqrt{-1})}\right)} & =\frac{(a-b(-1)}{(a+b \sqrt{-1})(a-b \sqrt{-1})} \\
= & \frac{a}{a^{2}+b^{2}}+\frac{(-b)}{a^{2}+b^{2}} \sqrt{-1}
\end{array}\right] \quad \begin{aligned}
(a+b \sqrt{2})+ & (c+d \sqrt{2}) \\
& =(a+c)+(b+d) \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& -(a+b \sqrt{2})(c+d \sqrt{2}) \\
& =(a c+2 b d)+(a d+b c) \sqrt{2}
\end{aligned}
$$

In terms of cadtition \& multiplication clefined as abwe. O($\sqrt{2}$)
is a fild.

- (non-examinchle)

A complex number $\alpha \in \mathbb{C}$ is an algeltaic number if it is

$$
\begin{aligned}
& \text { a tout if } f \in \mathbb{Q}[x] \\
& \text { Il } \\
& C_{n} x^{n}+C_{n-1} x^{n-1}+\cdots+c_{1} x \\
& x_{n} \\
& 0 \\
& C_{i} \in \mathbb{D} .
\end{aligned}
$$

Example $\sqrt{2}$ is a rut of

$$
\begin{array}{r}
x^{2}-2 \\
\sqrt{-1}-11- \\
x^{2}+1
\end{array}
$$

The set is all alsdaik numbers
detivas a field.
1 Checking to fold axioms. for these is really hard!
S Rings that are NoT
fields

$$
\text { fields } \Rightarrow \text { Figs } \Rightarrow \text { groups. }
$$

This means that there are tings that are
nut fields!
Det A Fing (R, t, x) is called a division fing is it satistes all the fiell axiomet exept the cummativisty w.rit. X.

Prp 24 Let (R, t, x) be a divistion ting
If $a b=a c$, ten $b=c$.
D. By definition, a hos iwerre with respect to x
Let a^{-2} be the inverse.
Multiplying $a b=a l$ by a^{-1} on both sike

$$
\begin{aligned}
& a^{-1} a b=a^{-1} a c \\
& \Rightarrow \quad 1 \cdot b=1 \cdot c \\
& \Rightarrow \quad b=c
\end{aligned}
$$

R Recall that if (F, t, X) is a field,

$$
\begin{aligned}
& \left(F_{11}^{x}, x\right) \text { is an ablian } \\
& f-40)
\end{aligned}
$$

is $\left(R_{1}, t, x\right)$ is a aivisisintius
$\left(R^{x}, x\right)$ is a group
but nut delian
Example
Let 1, p, q, r be
symbols

Santistyig the follwwirs (muntiplicatios) relationd.

$$
\begin{aligned}
\cdot 1 \cdot p & =p \cdot 1=p \\
1 \cdot q & =q \cdot 1=q \\
1 \cdot r & =r \cdot 1=r
\end{aligned}
$$

- $\begin{aligned} & \frac{p^{2}=-1}{q^{2}=-1} \\ & \frac{r^{2}=-1}{r^{2}}\end{aligned}$
- $p q=r \quad q p=-r$

$$
\begin{array}{ll}
q r=p & r q=-p \\
r p=q & p r=-q .
\end{array}
$$

Lat H be the sgt of elements. of the form

$$
\begin{aligned}
& C \cdot 1+C(p) \cdot p+C(q) q+C(r) \cdot r \\
& C_{1} C(p), C(q), C(r) \in \mathbb{R}
\end{aligned}
$$

with natural addition \& multiplication.

$$
\begin{aligned}
&(c \cdot 1+c(p) p+(c q) q+c((r) r) \\
&+ \\
& \quad\left(c^{\prime} \cdot 1+c^{\prime}(p) p+c^{\prime}(q) q\right. \\
&\left.+c^{\prime}(r) r\right) \\
&=\left(c+c^{\prime}\right) \cdot 1+\left(c(p)+c^{\prime}(p)\right) p+\cdots
\end{aligned}
$$

Exambe $(2 \cdot q+r)(2 p+1)$ $=\underset{-r}{4 q \cdot p}+2 q+\underset{\frac{q}{\pi}}{\frac{2 r p}{\pi}}+r$

$$
=(-4) \cdot r+\underbrace{2 q}_{4 q}+2 q+r
$$

This is a cuusion ting!
Exercise

$$
\begin{aligned}
& a=c+\left((p) p+\frac{((q) q}{t(c r) r}\right. \\
& b=c-c(p) p-c(q) q-c(r) r
\end{aligned}
$$

What is ab?

The answer is

$$
\begin{array}{r}
c^{2}+C(p)^{2}+C(q)^{2}+C(r)^{2} \\
\\
\in \mathbb{R} .
\end{array}
$$

This is an analoje of

$$
\begin{aligned}
z & =a+b \sqrt{-1} \\
\bar{z} & =a-b \sqrt{-1} \quad \text { complex } \\
z \cdot \bar{z} & =(a+b \sqrt{-1})(a-b \sqrt{-1}) \\
& =a^{2}+b^{2}
\end{aligned}
$$

Using this e the multiplication inverse of a

$$
\text { is } \begin{aligned}
\frac{b}{a_{b}}=\frac{1}{a_{b}} \cdot c & -\frac{1}{a_{b}} C(p) \rho \\
& -\frac{1}{a_{b}}((q) q \\
& \left.-\frac{1}{a_{b}} c(r) r\right]
\end{aligned}
$$

This is referred to cire Harmita's quatanings.

