Q1. We see the equation as $[13]_{2024}[X]_{2024}=[4]_{2024}$. We firstly find the multiplicative inverse of [13] in \mathbb{Z}_{2024} by Euclid's algorithm. Since

$$
\begin{aligned}
2024 & =13 \cdot 155+9 \\
13 & =9 \cdot 1+4 \\
9 & =4 \cdot 2+1
\end{aligned}
$$

we have $\operatorname{gcd}(2024,13)=1$ and

$$
\begin{aligned}
1 & =9-2 \cdot 4 \\
& =9-2 \cdot(13-1 \cdot 9) \\
& =(-2) \cdot 13+3 \cdot 9 \\
& =(-2) \cdot 13+3 \cdot(2024-155 \cdot 13) \\
& =3 \cdot 2024+(-467) \cdot 13 .
\end{aligned}
$$

Therefore $[-467]$ is the multiplicative inverse of $[13]$. Multiplying $[13][X]=[4]$ by $[-467]$ on both sides, we therefore obtain

$$
[X]=[-467][4]=[-1868]=[156] .
$$

All integers congruent to $156 \bmod 2024$ are the solutions to the congruence equation.
Q2.

\circ	(123)	(132)	(213)	(231)	(312)	(321)
(123)	(123)	(132)	(213)	(231)	(312)	(321)
(132)	(132)	(123)	(312)	(321)	(213)	(231)
(213)	(213)	(231)	(123)	(132)	(321)	(312)
(231)	(231)	(213)	(321)	(312)	(123)	(132)
(312)	(312)	(321)	(132)	(123)	(231)	(213)
(321)	(321)	(312)	(231)	(213)	(132)	(123)

Q3. (1) No. For example, (213) $\circ(132)=(231)$ but (132) $\circ(213)=(312)$. (2) $e=(123)$. In lectures, it is explained that the identity map on $\{1,2,3\}$ defines the identity element in the group and given the uniqueness of the identity element in a group, (123) has to be the one. Alternatively, one can check from the table that $(a b c) \circ(123)=(a b c) \circ(123)=(a b c)$ for all possible $(a b c)$. (3) $s \circ s=e, r \circ r \circ r=e$ and $(s \circ r) \circ(s \circ r)=e$. Of course, any variant of $(s \circ r) \circ(s \circ r)$, e.g. $(r \circ s) \circ(r \circ s)=e$ is also admissible.

Marking Scheme. Q1. +1 for spotting the answer correctly and +1 for justification. Q2. +3 for filling in the table correctly. Q3. (1) +1 (+0 without justification) (2) +1 (+0 without justification) (3) +3 (the hardest one +2).

