MTH 4104 Assessed Coursework I

Q1. We see the equation as $[13]_{2024}[X]_{2024} = [4]_{2024}$. We firstly find the multiplicative inverse of [13] in \mathbb{Z}_{2024} by Euclid's algorithm. Since

$$2024 = 13 \cdot 155 + 9
13 = 9 \cdot 1 + 4
9 = 4 \cdot 2 + 1,$$

we have gcd(2024, 13) = 1 and

 $1 = 9 - 2 \cdot 4$ = 9 - 2 \cdot (13 - 1 \cdot 9) = (-2) \cdot 13 + 3 \cdot 9 = (-2) \cdot 13 + 3 \cdot (2024 - 155 \cdot 13) = 3 \cdot 2024 + (-467) \cdot 13.

Therefore [-467] is the multiplicative inverse of [13]. Multiplying [13][X] = [4] by [-467] on both sides, we therefore obtain

$$[X] = [-467][4] = [-1868] = [156].$$

All integers congruent to 156 mod 2024 are the solutions to the congruence equation.

Q2.

0	(123)	(132)	(213)	(231)	(312)	(321)
(123)	(123)	(132)	(213)	(231)	(312)	(321)
(132)	(132)	(123)	(312)	(321)	(213)	(231)
(213)	(213)	(231)	(123)	(132)	(321)	(312)
(231)	(231)	(213)	(321)	(312)	(123)	(132)
(312)	(312)	(321)	(132)	(123)	(231)	(213)
(321)	(321)	(312)	(231)	(213)	(132)	(123)

Q3. (1) No. For example, $(213) \circ (132) = (231)$ but $(132) \circ (213) = (312)$. (2) e = (123). In lectures, it is explained that the identity map on $\{1, 2, 3\}$ defines the identity element in the group and given the uniqueness of the identity element in a group, (123) has to be the one. Alternatively, one can check from the table that $(abc) \circ (123) = (abc) \circ (123) = (abc)$ for all possible (abc). (3) $s \circ s = e, r \circ r \circ r = e$ and $(s \circ r) \circ (s \circ r) = e$. Of course, any variant of $(s \circ r) \circ (s \circ r)$, e.g. $(r \circ s) \circ (r \circ s) = e$ is also admissible.

Marking Scheme. Q1. +1 for spotting the answer correctly and +1 for justification. Q2. +3 for filling in the table correctly. Q3. (1) +1 (+0 without justification) (2) +1 (+0 without justification) (3) +3 (the hardest one +2).