Last Monday.
Def Let $(R,+, X)$ be a ting If R had an element " 1" which sadists to property:

$$
1 \times a=a \times 1=a \quad \forall a \in R
$$

ten no say that R his identify.
" 0 " ty identity deferent wo $r_{1}+$ " + " in R+2
is aten called the addifitive ideation
" 1 " is aten called to multicicito inanity.

Examle \mathbb{Z}_{n}
[1] is the identity
Def If (R, t, x) is a fing with isentity 1 an dement a in R is colled a cuit in R
if $\exists b \in R$ st

$$
a \times b=b \times a=1
$$

咋 R^{x} : tho set of mints in R

Examples $\mathbb{Z}^{x}=\{ \pm 1\}$

$$
\left.\begin{array}{rl}
\mathbb{Z}[i]=\{a+b i \mid a, b \\
i^{2}=-1
\end{array} \quad \mathbb{Z}\right\}
$$

GAL $(R,+x)$ is a rig with ideality $\left(R^{x}, x\right)$ is a grape.

Provsitim 9 (R, t, x) a ring with itatity 1

- The isentity 1 is unizhe
- If 1 is distiunt finm the anditive isentity 0 tew O is not a unit.
- 1 is a unit 8 its inkse w.rit. x is 1 ibelf

Pf Look at Prop 14 for inspiration. Suppose $Y \& S$ are elements in R
(1) sit.

$$
\begin{array}{ll}
r a=a r=a & { }^{\forall} G_{G} \\
s a=a s=a & \forall_{a}{ }_{c} R
\end{array}
$$

(G OC) $r=\$$.
Letting $a=\$$ in the former, I get

$$
r s=\$
$$

Similarly, $a=r$ in the latter, I get

$$
r \$=r
$$

Cumbinif those two, $s=r$.
(2) Suppase that 0 is a unit (GoAL find contradiction)
By definition, there exists $a \in R$

$$
\text { sit. } \quad a \cdot 0=0 \cdot a=1
$$

OTOH, Prop lb salas

$$
a \cdot 0=0 \cdot a=0 \quad \forall_{a}
$$

Combing these two.

$$
\text { wo get } 0=1
$$

This contradicts te asstumptim $0 \neq 1$.
(3) Since 1 is te idantity,

$$
1 \times a=a \times 1=a \quad \forall a \in R .
$$

In paticular

$$
1 \times 1=1
$$

This equality sals thet 1 is He inverse of 1 wirit. x.
Prop20 $\left(R_{1}+x\right)$ is a tion with identity 1

- If a is a unit, tem its invesele is umgire.

The inverse is written as

$$
a^{-1}
$$

- If a is a mitt, ten so is a^{-1}.

The inverse of tit inverse a^{-1} a a
is a.

$$
\left(a^{-2}\right)^{-1}=a
$$

- If a \& b are wits, ten
so is $a b=a \times b$ \& He inverse if $a b$ i\$ $b^{-1} a^{-1}$.

Pf see notch!
They all follow from Prop 14.
Theorem 21.
If $\left(R_{1}+, x\right)$ is a fig with identity,
them $\left(R^{x}, x\right)$ is a group.
If, in panticulw, R is a coronation firs, then $\left(R^{x}, x\right)$ is an delian grue.

Exericie $\left(\mathbb{Z}_{1},+, x\right)$
is a tiog d intages．
Define new addition

$$
a ⿴ 囗=a+b+1
$$

$$
\begin{aligned}
& a 冈 b=a+b+a b \\
& \forall a, b \in \mathbb{L}
\end{aligned}
$$

$(\mathbb{Z}, \boxplus, \mathbb{X}))$ is a commanative

Fing with i idenitiy．

$$
\begin{aligned}
& (R+0) \quad a \not ⿴ b \in \mathbb{Z} \\
& a+b+1 \\
& (2+1)<a 母(b+c+1) \\
& a ⿴ 囗 十(b \notin c) \\
& a+(b+c+1)+1 \\
& 11 ? \\
& \frac{(a ⿴ b) \nexists c}{a b c \in \mathbb{Z}} \times(a+b+1) \nexists c \\
& (a+b+1)+c+1
\end{aligned}
$$

$(R+2)$ I need to low for

$$
\begin{aligned}
& b \& a \oplus b=a \\
& \Leftrightarrow \quad a+b+1=a \\
& \Leftrightarrow \quad b=-1 .
\end{aligned}
$$

-1 is the idmatity element w. rit. \mathbb{H}.

Inked,

$$
\begin{aligned}
& \underline{a \boxplus(-1)}=a+(-1)+1=a \\
& (-1) \boxplus a=(-1)+a+1=a
\end{aligned}
$$

$(R+3)$ Gien a in \mathbb{Z} I need to find b in \mathbb{Z} s.t. $a \not ⿴ b=-1$ ~ This is the icharity w.r.t. ©
jie

$$
\begin{aligned}
& a+b+1=-1 \\
& \Leftrightarrow \quad b=-a-2
\end{aligned}
$$

Need to crek

$$
a \rightarrow(-a-2)=(-1)
$$

$$
\begin{aligned}
& (-a-2) \oplus a=(-1) . \\
& (R \times 0) \\
& (R \times 1) a \otimes(b \otimes c) \\
& \text { (d) } \quad{ }^{\prime \prime} \otimes(b+c+b c) \\
& (a 冈 b) \otimes c \int a+(b+c+b c) \\
& +a(b+c+b c) \\
& (a+b+a b) \propto x
\end{aligned}
$$

$$
\begin{aligned}
& (a+b+a b)+c \\
& \quad+(a+b+a b) \cdot c
\end{aligned}
$$

The multiplecunte icutity warit X
is O!

