(1)

Let the coordinates be:

$$
x^{a}=(u, r, \theta, \varphi)
$$

Than, we have:

$$
\begin{aligned}
& g_{u n}=\frac{1}{r} e^{2 \beta}-g^{2} r^{2} e^{2 \alpha} \\
& g_{u r}=e^{2 \beta} \\
& g_{u \theta}=g r^{2} e^{2 \alpha} \\
& g_{\theta \theta}=-r^{2} e^{2 \alpha} \\
& g_{94}=-r^{2} e^{-2 \alpha} \sin ^{2} \theta
\end{aligned}
$$

The remaining components vanish. In matrix form

$$
g_{a b}=\left(\begin{array}{cccc}
\frac{1}{r} e^{2 \beta}-g^{2} r^{2} e^{2 \alpha} & e^{2 \beta} & g r^{2} e^{2 \alpha} & 0 \\
e^{2 \beta} & 0 & 0 & 0 \\
g r^{2} e^{2 \alpha} & 0 & -r^{2} e^{2 \alpha} & 0 \\
0 & 0 & 0-r^{2} e^{-2 \alpha} \sin ^{2} \theta
\end{array}\right)
$$

(2) Line element of \mathbb{R}^{3} in spherical coonchnates:

$$
d s^{2}=d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \varphi^{2}
$$

The metric gab and the inuase metric $g^{a b}$ are:

$$
g_{a b}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & r^{2} & 0 \\
0 & 0 & r^{2} \sin ^{2} \theta
\end{array}\right) \quad, g^{a b}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / r^{2} & 0 \\
0 & 0 & 1 /\left(r^{2} \sin ^{2} \theta\right)
\end{array}\right)
$$

a)

$$
\left.\begin{array}{rl}
& X^{a}=\left(1, r, r^{2}\right) \\
\rightarrow X_{a} & =g_{a b} X^{b}=g_{a r}+r g_{a \theta}+r^{2} g_{a \varphi} \\
\Rightarrow X_{r} & =g_{r r}=1 \\
X_{\theta}=r g_{\theta \theta}=r^{3} \\
X_{\varphi} & =r^{2} g_{\varphi \varphi}=r^{4} \sin ^{2} \theta
\end{array}\right\} X_{a}=\left(1, r^{3}, r^{4} \sin ^{2} \theta\right)
$$

b)

$$
\begin{aligned}
& y_{a}=\left(0,-r^{2}, r^{2} \cos ^{2} \theta\right) \\
& y^{a}=g^{a b} y_{b} \\
& y^{r}=g^{a r} y_{r}=0 \\
& y^{\theta}=g^{\theta \theta} y_{\theta}=\frac{1}{r^{2}}\left(-r^{2}\right)=-1 \\
& y^{\varphi}=g^{\varphi \varphi} y_{\varphi}=\frac{1}{r^{2} \sin ^{2} \theta}\left(r^{2} \cos ^{2} \theta\right)=\cot ^{2} \theta
\end{aligned}
$$

(3) Tab is consewed: $\nabla^{a} T_{a b}=0$ and $T_{a b}=T_{(a b)}$
X^{a} satisfies: $\left.\nabla_{(a} X_{b}\right)=0$

$$
V_{a}=T_{a b} X^{b}
$$

Than,

$$
\begin{aligned}
\nabla^{a} V_{a} & =\nabla^{a}\left(T_{a b} X^{b}\right)= \\
& =\left(\nabla^{a} T_{a b}\right) X^{b}+T_{a b} \nabla^{a} X^{b} \\
& =0+T_{a b} \nabla^{(a} X^{b)} \\
& =0
\end{aligned}
$$

To go from the first line to the scend we have used the Leibang rule, and in the thine line we have uned that $T_{a b}$ is conseaved and $\left.T_{a b} \nabla^{a} X^{b}=T_{(a b)} \nabla^{(a} X^{b}\right)$ because $T_{a b}$ is symmetric. In the fourth line we ene that $\nabla_{(a} X_{b)}=0$ is a tensor equation and we can raise the indices with $\mathrm{g}^{\text {ab }}$.
(4) $S_{j}{ }^{c}$ a $(1,1)$ tensor
a) It follows form the geneal formula given in the lectures:

$$
\nabla_{a} S_{b}^{c}=\partial_{a} S_{b}^{c}+\Gamma_{d a}^{c} S_{b}^{d}-\Gamma_{b a}^{d} S_{d}^{c}
$$

b) Using the previous formula,

$$
\begin{aligned}
\nabla_{a} \delta_{b}^{c} & =\partial_{a} \delta_{b}^{c}+\Gamma_{d a}^{c} \delta_{b}^{d}-\Gamma_{b a}^{d} \delta_{d}^{c} \\
& =\Gamma_{b a}^{c}-\Gamma_{b a}^{c}=0
\end{aligned}
$$

where we have used that $\partial_{a} \delta_{b}{ }^{2}=O$ since the components of δa^{b} are constants.
(Notice that for a metric compatible connection,)

$$
\nabla_{a} \delta_{b}^{c}=\nabla_{a}\left(g_{b d} g^{d c}\right)=0
$$

$\sin c e \nabla_{a} g_{b c}=0$ and $\nabla_{a} g^{b c}=0$
c) $\delta_{a}{ }^{a}=\sum_{a=0}^{3} \delta_{a}{ }^{a}=\sum_{a=0}^{3} 1=4$
(5) Stating from, $g_{a b} g^{b c}=\delta_{a}^{c}$ and applying ∇_{d}, we get

$$
\begin{aligned}
& \nabla_{d}\left(g_{a b} g^{b c}\right)=\left(\nabla_{d} g_{a b}^{0}\right) g^{b c}+g_{a b} \nabla_{d} g^{b c}= \\
&=\nabla_{d} \delta_{a}^{c}=0 \\
& \Rightarrow g_{a b} \nabla_{d} g^{b c}=0
\end{aligned}
$$

Multiplying by gear we get

$$
g^{a e} g_{a b} \nabla_{d} g^{b c}=\delta_{b}^{e} \nabla_{d} g^{b c}=\nabla_{d} g^{e c}=0
$$

which is the desired result
(6) Given the line element,

$$
d s^{2}=e^{y} d x^{2}+e^{x} d y^{2}
$$

we have:
a) $\quad g_{a b}=\left(\begin{array}{ll}e^{y} & 0 \\ 0 & e^{x}\end{array}\right), \quad g^{a b}=\left(\begin{array}{cc}e^{-y} & 0 \\ 0 & e^{-x}\end{array}\right)$
b) Recall the geneal formula:

$$
\Gamma_{b c}^{a}=\frac{1}{2} g^{a d}\left(\partial_{b} g_{c d}+\partial_{c} g_{b d}-\partial_{d} g_{b c}\right)
$$

Using the identification $\left(x^{1}, x^{2}\right)=(x, y)$, we have

$$
\begin{aligned}
\Gamma_{11}^{1} & =\frac{1}{2} g^{1 d}\left(\partial_{1} g_{1 d}+\partial_{1} g_{1 d}-\partial_{d} g_{11}\right) \\
& =\frac{1}{2} g^{11} \partial_{1} g_{11}=0 \\
\Gamma_{12}^{1} & =\frac{1}{2} g^{1 d}\left(\partial_{1} g_{2 d}+\partial_{2} g_{1 d}-\partial_{d} g_{12}\right) \\
& =\frac{1}{2} g^{11} \partial_{2} g_{11}=\frac{1}{2} e^{-y} e^{y}=\frac{1}{2} \\
\Gamma_{11}^{2} & =\frac{1}{2} g^{2 d}\left(2 \partial_{1} g_{1 d}-\partial_{d} g_{11}\right) \\
& =-\frac{1}{2} g^{22} \partial_{2} g_{11}=-\frac{1}{2} e^{y-x}
\end{aligned}
$$

(7) Since x^{a} is the tangent vector to a geodesic, it satisfies

$$
x^{b} \nabla_{b} x^{a}=0
$$

($\omega \log$ hae we assume that the geodesic is affinely parametrised). Then, we have

$$
\begin{aligned}
& X^{a} \nabla_{a}\left(|X|^{2}\right)=X^{a} \nabla_{a}\left(g_{b c} X^{b} X^{c}\right) \\
& =X^{a}
\end{aligned} \quad\left[\left(\nabla_{a} g_{b c}\right) X^{b} X^{c} .\right.
$$

$$
\begin{aligned}
& =2 X_{b} X^{a} \nabla_{a} X^{b} \\
& =0
\end{aligned}
$$

To go from the and to the Ord line we have used that

$$
\begin{aligned}
& \nabla_{a} g_{b c}=0 \quad \text { (metucc compatible connection) } \\
& g_{b c}\left(\left(\nabla_{a} X^{b}\right) X^{c}+X^{b} \nabla_{a} X^{c}\right)=2 g_{b c} X^{b} \nabla_{a} X^{c} \\
& =2 X_{b} \nabla_{a} X^{b}
\end{aligned}
$$

since $g_{b c}$ is symmetric
(8) V^{a} a Killing vector: $\nabla\left(a V_{b)}=0\right.$
X^{a} tangent vector to a geodesic: $X^{a} \nabla_{a} X^{b}=0$
E a scalar: $E \equiv V_{a} X^{a}$
Then,

$$
\begin{aligned}
X^{a} \nabla_{a} E & =X^{a} \nabla_{a}\left(V_{b} X^{b}\right) \quad x^{a} \text { tangent } \\
& =X^{a} X^{b} \nabla_{a} V_{b}+V_{b} x^{a} \nabla_{a} X^{b} \text { to geodesic } \\
& =X^{a} X^{b} \nabla_{(a} V_{b)} \\
& =0
\end{aligned}
$$

In going from the and to the 3rd line we have used that X^{a} is tangent to a geodesic and heme it satisfies $X^{a} \nabla_{a} X^{b}=0$ In addition, note that $X^{a} X^{b}$ is symmetric under $a \leftrightarrow b$. Hence, in the term $X^{a} X^{b} \nabla_{a} V_{b}$ only the symmetric part of $\nabla_{a} V_{b}$ contributes:

$$
X^{a} X^{b} \nabla_{a} V_{b}=X^{a} X^{b} \nabla_{(a} V_{b)}
$$

In the last line we have used Killing's equation:

$$
\nabla_{(a} V_{b)}=0
$$

(9)

$$
\begin{array}{ll}
d s^{2}=-e^{2 A r} d t^{2}+d r^{2} & , \quad A: \text { constant } \\
g_{a b}=\left(\begin{array}{cc}
-e^{2 A r} & 0 \\
0 & 1
\end{array}\right), & g^{a b}=\left(\begin{array}{cc}
-e^{-2 A r} & 0 \\
0 & 1
\end{array}\right)
\end{array}
$$

Genial formula for the Cnistoffel symbols.

$$
\Gamma_{b c}^{a}=\frac{1}{2} g^{a d}\left(\partial_{b} g_{c d}+\partial_{c} g_{b d}-\partial_{d} g_{b c}\right)
$$

$$
\begin{aligned}
& \Gamma_{r r}^{r}=\frac{1}{2} g^{r r} \partial_{r} g_{r r}=0 \\
& \Gamma_{t r}^{r}=\Gamma_{r t}^{r}=\frac{1}{2} g^{r r}\left(\partial_{t} g_{r r}+\partial_{r} g_{t r}-\partial_{r} g_{t r}\right)=0 \\
& \Gamma_{t t}^{r}=\frac{1}{2} g^{r r}\left(2 \partial_{t} g_{t r}-\partial_{r} g_{t t}\right)=A e^{2 A r} \\
& \Gamma_{t t}^{t}=\frac{1}{2} g^{t t} \partial_{t} g_{t t}=0 \\
& \Gamma_{t r}^{t}=\Gamma_{r t}^{t}=\frac{1}{2} g^{t t}\left(\partial_{t} g_{t r}+\partial_{r} g_{t t}-\partial_{t} g_{t r}\right)=A \\
& \Gamma_{r r}^{t}=\frac{1}{2} g^{t t}\left(2 \partial_{r} g_{r t}-\partial_{t} g_{r r}\right)=0
\end{aligned}
$$

(10) The calculation was done in the lectures with the result:

$$
\begin{aligned}
& (r, \theta)=\left(x^{1}, x^{2}\right) \\
& \Gamma_{22}^{1}=\Gamma_{\theta \theta}^{r}=-r \\
& \Gamma_{12}^{2}=\Gamma_{21}^{2}=\Gamma_{r \theta}^{\theta}=\Gamma_{\theta r}^{\theta}=\frac{1}{r}
\end{aligned}
$$

The remaining components of the Chistoffels vanish.

The geoclesic equation is

$$
\frac{d^{2} x^{a}}{d \lambda^{2}}+\Gamma^{a} b c \frac{d x^{b}}{d \lambda} \frac{d x^{c}}{d \lambda}=0
$$

Denote $\dot{r}=\frac{d r}{d \lambda}, \ddot{r}=\frac{d^{2} r}{d \lambda^{2}}, \dot{\theta}=\frac{d \theta}{d \lambda}, \ddot{\theta}=\frac{d^{2} \theta}{d \lambda^{2}}$
Then, the components of the geodesic equation are:

$$
\begin{aligned}
& \ddot{r}+\Gamma_{\theta \theta}^{r} \dot{\theta}^{2}=\dot{r}-r \dot{\theta}^{2}=0 \\
& \ddot{\theta}+\Gamma_{r \theta}^{\theta} \dot{r} \dot{\theta}+\Gamma_{\theta r}^{\theta} \dot{\theta} \dot{r}=\ddot{\theta}+\frac{2}{r} \dot{\theta} \dot{r}=0
\end{aligned}
$$

Notice that the second equation can be cation as

$$
\ddot{\theta}+\frac{2}{r} \dot{\theta} \dot{r}=\frac{1}{r^{2}} \frac{d}{d \lambda}\left(r^{2} \dot{\theta}\right)=0
$$

Hance, $r^{2} \dot{\theta}=L=$ constant

$$
\Rightarrow \quad \dot{\theta}=\frac{L}{r^{2}}
$$

Plugging this result into the first equation,

$$
\begin{aligned}
& \ddot{r}-r \dot{\theta}^{2}=\ddot{r}-r\left(\frac{L^{2}}{r^{4}}\right)=\ddot{r}-\frac{L^{2}}{r^{3}}=0 \\
& r^{3} \ddot{r}=L^{2} \quad \Rightarrow \quad r(\lambda)=\sqrt{\frac{L^{2}+c_{1}^{2}\left(\lambda+c_{2}\right)^{2}}{c_{1}}} \\
& \theta(\lambda)=\arctan \left(\frac{c_{1}\left(\lambda+c_{2}\right)}{L}\right)
\end{aligned}
$$

where c_{1} and C_{2} ane integration constants and we have set to O the integration constant in the equation for θ.
Recalling that $\cos (\arctan (x))=\frac{1}{\sqrt{1+x^{2}}}$

$$
\sin (\arctan (x))=\frac{x}{\sqrt{1+x^{2}}}
$$

the Cartesian wonchinatos along the geodesics are:

$$
\begin{aligned}
& x=r(\lambda) \cos \theta(\lambda)=\sqrt{\frac{L^{2}+c_{1}^{2}\left(\lambda+c_{2}\right)^{2}}{c_{1}}} \frac{1}{\sqrt{1+\frac{c_{1}^{2}\left(\lambda+c_{2}\right)^{2}}{L^{2}}}}= \\
&=\frac{L}{\sqrt{c_{1}}} \\
&\left.\begin{array}{rl}
y & =r(\lambda) \sin \theta(\lambda)
\end{array}\right)=\sqrt{\frac{L^{2}+c_{1}^{2}\left(\lambda+c_{2}\right)^{2}}{c_{1}}} \frac{c_{1}\left(\lambda+c_{2}\right)}{L} \\
& \sqrt{1+\frac{c_{1}^{2}\left(\lambda+c_{2}\right)^{2}}{L^{2}}}
\end{aligned}=
$$

There ane straight limes.
(11)
a)

$$
\begin{aligned}
& d s^{2}=-d t^{2}+a(t)^{2}\left(d x^{2}+d y^{2}+d z^{2}\right) \\
& z=-\ddot{t}^{2}+a(t)^{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)
\end{aligned}
$$

Use the Eula-Lagrange equations:

$$
\frac{d}{d \lambda}\left(\frac{\partial z}{\partial x^{a}}\right)-\frac{\partial \mathcal{L}}{\partial x^{a}}=0
$$

t - component:

$$
\begin{aligned}
& \frac{\partial z}{\partial t}=2 a a^{\prime}\left(\dot{x}^{2}+\dot{j}^{2}+\dot{z}^{2}\right) \\
& \\
& \frac{\partial z}{\partial \dot{t}}=-2 \dot{t} ; \frac{d}{d \lambda}\left(\frac{\partial z}{\partial \dot{t}}\right)=-2 \ddot{t} \\
& \Rightarrow \ddot{t}+a a^{\prime}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)=0 \\
& \Rightarrow \Gamma_{x x}^{t}=\Gamma_{y y}^{t}=\Gamma_{z z}^{t}=a a^{\prime}
\end{aligned}
$$

x-component :

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=0 \\
& \frac{\partial z}{\partial \dot{x}}=2 a(t)^{2} \dot{x} \Rightarrow \frac{d}{d \lambda}\left(\frac{\partial z}{\partial \dot{x}}\right)=2 a(t)^{2} \ddot{x}+4 a(t) a^{\prime}(t) \dot{t} \dot{x} \\
\Rightarrow & \ddot{x}+2 \frac{a^{\prime}}{a} \dot{t} \dot{x}=0 \\
\Rightarrow & \Gamma_{t x}^{x}=\Gamma_{x t}^{x}=\frac{a^{\prime}}{a}
\end{aligned}
$$

and by symmetry $\Gamma_{t y}^{y}=\Gamma_{y t}^{y}=\Gamma_{t z}^{z}=\Gamma_{z t}^{z}=\frac{a^{\prime}}{a}$
b) We have to check whether V^{a} satisfies the geoclesic equation: $\quad V^{b} \nabla_{b} V^{a}=0$
t)

$$
\begin{aligned}
& V^{b} \nabla_{b} V^{t}=V^{b}\left(\partial_{b} V^{t}+\Gamma_{b c}^{t} V^{c}\right) \\
&= V^{t} \partial_{t} V^{t}+V^{t} \Gamma_{t c}^{t} \nabla_{c}^{0} V^{c} \\
&+ V^{x} \partial_{x} V^{t}+V^{x} \Gamma_{x c}^{t} V^{c} \\
&=-\frac{K^{2}}{a(t)^{3}} a^{\prime}+V^{x} \Gamma_{x x}^{t} V^{x}=-\frac{K^{2}}{a(t)^{3}} a^{\prime}+\left(a a^{\prime}\right)\left(\frac{K}{a(t)^{2}}\right)^{2} \\
&=0
\end{aligned}
$$

x)

$$
\begin{aligned}
& V^{b} \nabla_{b} V^{x}=V^{b}\left(\partial_{b} V^{x}+\Gamma_{b c}^{x} V^{c}\right) \\
= & V^{t}\left(\partial_{t} V^{x}+\Gamma_{t x}^{x} V^{x}\right) \\
+ & V^{x}\left(\partial_{x} V^{x}+\Gamma_{x t}^{x} V^{t}\right) \\
= & V^{t}\left(-\frac{2 k}{a(t)^{3}} a^{\prime}+2 \frac{a^{\prime}}{a} \frac{k}{a(t)^{2}}\right)=0
\end{aligned}
$$

y) $\quad V^{b} \nabla_{b} V^{y}=V^{b}\left(\partial_{b} \not^{y}+\Gamma_{b c}^{y} V^{c}\right)=0$

$$
V^{b} \nabla_{b} V^{z}=0
$$

c) $u_{a}=g_{a b} u^{b}=g_{a t}=-\delta_{a}^{t}$

Thus,

$$
\begin{aligned}
& K_{a b} V^{a} V^{b}=a(t)^{2}\left(V_{a} V^{a}+\left(V^{t}\right)^{2}\right) \\
& =a(t)^{2}\left(-\left(V^{t} / 2^{2}+a(t)^{2}\left(\frac{K}{a(t)^{2}}\right)^{2}+\left(V^{t}\right)^{2}\right)\right. \\
& =K^{2}
\end{aligned}
$$

which is a constant. Hence

$$
V^{a} \nabla_{a}\left(K_{b c} V^{b} V^{c}\right)=V^{a} \nabla_{a}\left(K^{2}\right)=0
$$

