Please fill in feedback questionnaire an QMplus!

Recap quiz
An LP max $\underline{C}^{\top} \underline{x}$
sub to $\quad A \underline{x}=\underline{b}, \underline{x} \geqslant 0$
is called unbounded if, for every $k \geqslant 0$ there exists a feasible solution x such that $c^{+} \underline{x} \geqslant k$

Suppose we apply Simplex to above Lp and final tablean is

	x_{1}	x_{2}	s_{1}	s_{2}	
s_{1}	1	-3	1	0	3
s_{2}	0	-8	2	1	10
	0	11	-3	0	-9

What is the next step?
We conclucle $L P$ is unbanded since no positive entries in highlighred column

Outline for today.

- Simplex method and unbanded CPs.
- So far con use simplex to solve

$$
\max \underline{c}^{\top} x
$$

Sub to $A \underline{x}=\underline{b} \quad \underline{x} \geqslant 0$
when $b \geq 0$

- What to do when sone entries of b are less than 0 .
- Complications that arise with simplex
simplex algorithm and unborded LPS
Recall step 3(b) in simplex, if all entries of highlighted column are $\leqslant 0$ (ignoring final row) then $\angle P$ is unbounded.
Explanation by example
Given LP max $3 x_{1}+2 x_{2}$

$$
\begin{array}{r}
\text { sub to } \begin{aligned}
x_{1}-3 x_{2} & \leqslant 3 \\
-2 x_{1}-2 x_{2} & \leqslant 4 \\
x_{1}, x_{2} & \approx 0
\end{aligned}, ~
\end{array}
$$

If we use simplex $\max 3 x_{1}+2 x_{2}$

$$
\text { subtc } x_{1}-3 x_{2}+s_{1}=3
$$

$$
-2 x_{1}-2 x_{2}+52=4
$$

$$
x_{1}, x_{2} \geq 0
$$

| Initial tablean | $\left\lvert\, \begin{array}{lllll}x_{1} & x_{2} & s_{1} & s_{2} & \\ s_{1} & 1 & -3 & 1 & 0 \\ 3 & 3 / 1=3 \\ s_{2} & -2 & -2 & 0 & 1\end{array}\right.$ | 4 | - | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 3 | 2 | 0 | 0 | 0 |

$$
\begin{array}{l|cccc|ccc}
R_{1}^{\prime}=R_{1} & x_{1} & x_{1} & x_{2} & s_{1} & s_{2} & \\
R_{2}^{\prime}=R_{2}+2 R_{1} & s_{2} & 0 & -8 & 1 & 0 & 3 & 3 / 1=3 \\
R_{f}^{\prime}=R_{f}-3 R_{1} & 0 & 11 & -3 & 0 & -9
\end{array}
$$

Sine all entries in highlighted column one negative we know LP is mounded.
Let's try to see Why

	x_{1}	x_{2}	s_{1}	s_{2}	
x_{1}	1	-3	1	0	3
s_{2}	0	-8	2	1	10
	0	11	-3	0	-9

Final tablean tells us our original LP is equivalent to
maximise

$$
11 x_{2}-3 s_{1}+9
$$

sub to

$$
\begin{aligned}
x_{1} & -3 x_{2}+s_{1}=3 \\
& -8 x_{2}+2 s_{1}+s_{2}=10 \\
& x_{1}, x_{2}, s_{1}, s_{2} \geqslant 0 .
\end{aligned}
$$

It also gives us a BFs $\left(\begin{array}{l}x_{1} \\ x_{2} \\ s_{1} \\ s_{\varepsilon}\end{array}\right)=\left(\begin{array}{c}3 \\ 0 \\ 0 \\ 10\end{array}\right)$
with objective vale 9 .
Wo con increase x_{2} as much as we like and heep the constraints satisfied by also increasing the basic variables (x_{1} and s_{2}). This will increase the dojective.
find feasible solution whore objective value is $\geqslant 100$ by modifying feasible solution above.
ans: beep $s_{1}=0$ wont $11 x_{2}-35_{1}+9 \geqslant 100$
Take eg. $x_{2}=10$. Now use constraints to find x_{1} and $s_{2} \quad x_{1}-3 x_{2}+s_{1}=3$

$$
\Rightarrow x_{1}=33
$$

Also

$$
\begin{aligned}
& -8 x_{2}+2 s_{1}+s_{2}=10 \\
& \Rightarrow s_{2}=90
\end{aligned}
$$

$$
\begin{aligned}
& \text { so }\left(\begin{array}{l}
x_{1} \\
x_{2} \\
s_{1} \\
s_{2}
\end{array}\right)=\left(\begin{array}{l}
33 \\
10 \\
0 \\
90
\end{array}\right) \begin{array}{l}
\text { is feasible with } \\
\text { objective value } \\
11 x_{2}-3 s_{1}+9=119 .
\end{array} \\
& \Rightarrow\binom{x_{1}}{x_{2}}=\binom{33}{10} \quad \begin{array}{l}
\text { is feasible with } \\
\text { obj sake } 119
\end{array} \\
& \text { incriginal LP } \\
& \text { (check). }
\end{aligned}
$$

2- phase simplex algorithm
Given $C P$ in standard inequality form
$\max \subseteq^{\top} x$
sub tc $A \underline{x} \leqslant \underline{b}, x \geq 0$

$$
\underline{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \quad A \quad \text { is } m \times n \times \begin{aligned}
& \text { matrix. }
\end{aligned}
$$

If $\underline{b} \geqslant 0$, can implement simplex by first changing to standard equation form
starting with BFS $\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n} \\ s_{1} \\ \vdots \\ s_{m}\end{array}\right)=\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ b_{1} \\ \vdots \\ b_{m}\end{array}\right)$
This is feasible if $b_{i} \geqslant 0 \forall$ and then we apply algorithm from last time.
If $b_{i}<0$ for some i then con't use this (not feasible)
Have to do some work to find a starting feasible solution.
The problem of finding a feasible solution ot an Ll con itself be cast as a (different) $L P$.

Example

$$
\begin{array}{ll}
\operatorname{maximise} & 10 x_{1}+15 x_{2}+8 x_{3} \\
\text { sub to } & 8 x_{1}+6 x_{2}+12 x_{3} \leqslant 24 \\
& 4 x_{1}+6 x_{2}+6 x_{3} \geqslant 6 \\
& 6 x_{1}+4 x_{2}+8 x_{3}=12 \\
& x_{1}, x_{2}, x_{3} \geqslant 0 .
\end{array}
$$

Transtorm to standard equn form
(A)

$$
\begin{array}{llll}
\text { maximise } 10 x_{1}+15 x_{2}+8 x_{3} \\
\text { sub to } & 8 x_{1}+6 x_{2}+12 x_{3}+5, & =24 \\
& -x_{1}-6 x_{2}-6 x_{3} \\
& 6 x_{1}+4 x_{2}+8 x_{3} & =-6 & \text { problem } \\
& x_{1}, x_{2}, x_{3}, s_{1}, s_{2} \geqslant 0 & & \\
& \text { problem }
\end{array}
$$

No easy storting feasible solution because of Constraints 2 and 3.
Introduce artificial variables into constraints to artificially create on easy starting feasible solution,
(B) $\max -a_{1}-a_{2}$
Sub to $8 x_{1}+6 x_{2}+12 x_{3}+s_{1} \quad=24$

$$
\begin{array}{lll}
-4 x_{1}-6 x_{2}-6 x_{3} \\
6 x_{1}+4 x_{2}+8 x_{3} & +s_{2} & =-6 \\
x_{1}, x_{2}, x_{3}, s_{1}, 8 x_{2}, a_{1}, a_{2} \geqslant 0 & +a_{2}=12 & \text { problem }
\end{array}
$$

A feasible solution to (B) where $a_{1}=a_{2}=0$ gives a feasible solution to (A)
(u)Write a goal for (B) that would give a feasible solution for \mathbb{A}
(2) Give easy feasible solution for (B)
(B) max $-a_{1}-a_{2}$
sub to

$$
\begin{array}{rlrl}
8 x_{1}+6 x_{2}+12 x_{3}+s_{1} & & =24 & \\
-4 x_{1}-6 x_{2}-6 x_{3}+s_{2}-a_{1} & =-6 & \text { problem } \\
6 x_{1}+4 x_{2}+8 x_{3} & +a_{2} & =12 \quad \text { problem } \\
x_{1}, x_{2}, x_{3}, s_{1}, s_{2}, a_{1}, a_{2} \geqslant 0 & &
\end{array}
$$

A feasible solution to (B) where $a_{1}=a_{2}=0$ gives a feasible solution to (A)
So we thy to minimise $a_{1}+a_{2}$ ie. maximise $-a_{1}-a_{2}$.

Howe easy starting feasible solution for (B)

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}, s_{1}, s_{2}, a_{1}, a_{2}\right) \\
= & (0,0,0,24,0,6,12)
\end{aligned}
$$

Now apply simplex.
Apply simplex. Write initial tableau

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	
s_{1}	8	6	12	1	0	0	0	24
a_{1}	-4	-6	-6	0	1	-1	0	-6
a_{2}	6	4	8	0	0	0	1	12
$\rightarrow-w$	0	0	0	0	0	-1	-1	0
$\rightarrow-z$	10	15	8	0	0	0	0	0

we carry along aiginal objective so that tableau is

- in correct form once we've found our starting feasible solution (in second phase)
This is objective function $-a_{1}-a_{2}$ that we wont to maximise in the first phase

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	
R_{1}	s_{1}	8	6	12	1	0	0	0
R_{2}	a_{1}	-4	-6	-6	0	1	-1	0
R_{3}	a_{2}	6	4	8	0	0	0	1
R_{w}	$-w$	0	0	0	0	0	-1	-1
$R_{z}-z$	10	15	8	0	0	0	0	0

Tableau not yet in valid form Need to clear columns corresponding to basic variables (columns highlighted above). clear them in one step.

		x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	
$R_{1}^{\prime}=R_{1}$	s_{1}	8	6	12	1	0	0	0	24
$R_{2}^{\prime}=-R_{2}$	a_{1}	4	6	6	0	-1	1	0	6
$R_{3}^{\prime}=R_{3}$	a_{2}	6	4	8	0	0	0	1	12
$R_{\omega}^{\prime}=R_{w}+R_{3}-R_{2}$	$-w$	10	10	14	0	-1	0	0	18
$R_{z}^{\prime}=R_{2}$	$-z$	10	15	8	0	0	0	0	0

Above tablewn in valid form.
Now we apply simplex (from last week) remembering
Kw is our objective row
R_{z} corried along for convenience

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	
s_{1}	8	6	12	1	0	0	0	24
a_{1}	4	6	6	0	-1	1	0	6
a_{2}	6	4	8	0	0	0	1	12
$-w$	10	10	14	0	-1	0	0	18
$-z$	10	15	8	0	0	0	0	0

$$
\begin{aligned}
& 24 / 12=3 \\
& 6 / 6=1 \\
& 12 / 8=3 / 2
\end{aligned}
$$

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	
$R_{1}^{\prime}=R_{1}-12 R_{2}^{\prime}$	s_{1}	0	-6	0	1	2	-2	0
$R_{2}^{\prime}=\frac{1}{6} R_{2}$	x_{3}	$2 / 3$	1	1	0	$-1 / 6$	$1 / 6$	0
12	1							
$R_{3}^{\prime}=R_{3}-8 R_{2}^{\prime}$	a_{2}	$2 / 3$	-4	0	0	$4 / 3$	$-4 / 3$	1
$R_{w}^{\prime}=R_{w}-14 R_{2}^{\prime}-w$	$-2 / 3$	-4	0	0	$4 / 3$	$-7 / 3$	0	4
$R_{z}^{\prime}=R_{z}-8 R_{2}^{\prime}$	$-z$	$14 / 3$	7	0	0	$4 / 3$	$-4 / 3$	0
-8								

$\left\lvert\,$$x_{1}$ x_{2} x_{3} s_{1} s_{2} $a_{1}$$a_{2}\right.$									
s_{1}	0	-6	0	1	2	-2	0	12	$12 / 2=6$
x_{3}	$2 / 3$	1	1	0	$-1 / 6$	$1 / 6$	0	1	-
a_{2}	$2 / 3$	-4	0	0	$4 / 3$	$-4 / 3$	1	4	$4 /(4)$
$-w$	$2 / 3$	-4	0	0	$4 / 3$	$-7 / 3$	0	4	
$-z$	$14 / 3$	7	0	0	$4 / 3$	$-4 / 3$	0	-8	

$R_{1}^{\prime}=R_{1}-2 R_{3}^{\prime}$	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	
R_{1}	-1	0	0	1	0	0	$-3 / 2$	6
$R_{L}^{\prime}=R_{2}+\frac{1}{6} R_{3}^{\prime}$	x_{3}	$3 / 4$	$1 / 2$	1	0	0	0	$1 / 8$
$R_{3}^{\prime}=\frac{3}{4} R_{3}$	s_{2}	$1 / 2$	-3	0	0	1	-1	$3 / 4$
$R_{1}^{\prime}=R_{\omega}-\frac{4}{3} R_{3}^{\prime}$	$-\omega$	0	0	0	0	0	-1	3
$R_{z}=R_{z}-\frac{4}{3} R_{3}^{\prime}$	4	11	0	0	0	0	-1	0

Here phase (ends. No positive values in Ru
Optimal solution for (B) given by $s_{1}=6, x_{3}=3 / 2, s_{2}=3$ and all other variables 0 (including a_{1} and a_{2})
This gives us a fecusible solution tor (A) namely

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
s_{1} \\
s_{2}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
3 / 2 \\
6 \\
3
\end{array}\right) \text { (cheder) }
$$

Con now apply normal simplex to solve A Because we corvied R_{z} our tableau is immediately ready to apply simplex.
Simply remove Ru and columns corresponding to a_{1} and a_{2} and apply pivot operations as usual.

Phase 2

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	
s_{1}	-1	0	0	1	0	6
x_{3}	$3 / 4$	$1 / 2$	1	0	0	$3 / 2$
s_{2}	$1 / 2$	-3	0	0	1	3
-2	4	11	0	0	0	

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	
s_{1}	-1	0	0	1	0	6
x_{3}	$\frac{3}{4}$	$\frac{1}{2}$	1	0	0	$\frac{3}{2}$
s_{2}	$\frac{1}{2}$	-3	0	0	1	3
$-z$	4	11	0	0	0	-12

$$
3 / 2 / 1 / 2=3
$$

Pivet.

$$
\begin{aligned}
& R_{1}^{\prime}=R_{1} \\
& R_{2}^{\prime}=2 R_{2} \\
& R_{3}^{\prime}=R_{3}+3 R_{2}^{\prime} \\
& R_{z}^{\prime}=R_{z}-\| R_{2}^{\prime}
\end{aligned}
$$

optimal solution to (A) is $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ s_{1} \\ s_{2}\end{array}\right)=\left(\begin{array}{c}0 \\ 3 \\ 0 \\ 6 \\ 12\end{array}\right)$

$$
\Rightarrow\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
3 \\
0
\end{array}\right) \begin{aligned}
& \text { is optimal } \\
& \text { solution to } \\
& \text { ariginal LP }
\end{aligned}
$$

with dojective vake 45 .

Q: we found optimal solution for (B) with objective value 0 . (in phase 1).

What would it mean for (A) if instead
(i) (B) had optimal solution whore objective was not zero means (A) is infeasible
(ii) (B) was infeasible (not possible (saw that (3) has an easy stating feasible solution).
(iii) (B) was unbounded $\begin{aligned} \text { nat possible. objective } & =-a_{1}-a_{2}\end{aligned} \leqslant 0$
(A) because $a_{1}, a_{2} \geqslant 0$.
maximise $10 x_{1}+15 x_{2}+8 x_{3}$
sub to

$$
\begin{aligned}
& 8 x_{1}+6 x_{2}+12 x_{3}+s_{1}=24 \\
&-4 x_{1}-6 x_{2}-6 x_{3}+s_{2}=-6 \\
& 6 x_{1}+4 x_{2}+8 x_{3}=12 \\
& x_{1}, x_{2}, x_{3}, s_{1}, s_{2} \geqslant 0 .
\end{aligned}
$$

(b) max $-a_{1}-a_{2}$
sub to $8 x_{1}+6 x_{2}+12 x_{3}+s_{1}=24$

$$
\begin{aligned}
-4 x_{1}-6 x_{2}-6 x_{3}+s_{2}-a_{1} & =-6 \\
6 x_{1}+4 x_{2}+8 x_{3} & +a_{2}=12 \\
x_{1}, x_{2}, s_{1}, s_{2}, a_{1}, a_{2} \geqslant 0 &
\end{aligned}
$$

Formal description of 2-phase simplex
(1) Given $L P$ transform into standard equation farm with slack variables just as before
(2)- If there is constraint with a slack variable s and $b<0$

$$
\text { say } a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}+s=b
$$

then replace with $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}+s-a=b$

- If there is constraint with no slack variable

$$
\text { say } \quad a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

then replace with $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}+a^{\prime}=b$
Here a, a^{\prime} are artificial variables with sign restriction $a, a^{\prime} \geqslant 0$ Each replaced constraint gets a different artificial variable.
(3) Form initial tableau as betcre except

- variables on the lett

If a constraint has an artificial variable, put it on the left
It a constraint has no artificial variable, put its slack variable on the left
(Recall variables listed on the lett are the basic variables in cur current basic feasible solution)

- Two rows below the line
we have a row Ru for our phase 1 objective which has a - 1 for each artificial variable and zeros every where else
we have a row R_{2} for our LP objective just as betare.
(4) Bring tableau into valid form so that each artificial variable has a single 1 and all other zeros in its column
Dc this as follows:
(a) Ignaing R_{2} and R_{w}

Multiply rows by - I where necessong se that each artificial variable has in its column (above the line) a single 1 (rather than -1)
(b) Every row with an artificial variable on the left is added to R_{w} (tc remove - i's in columns of artificial variables).

(5) Nav apply standard simplex treating Rw as our objective.
(When clearing a column in a pivot, we also make
(6) Sure we clear the column entry in R_{2}).
(a) If far right entry of R_{w} is 0 then have found our starting basic feasible solution.
Delete Kw and columns of artificial variables.
Apply standard simplex to this tableau with R_{2} as objective. (We call this phase 2).
(6) (a) If far right entry of R_{w} is 0 then have found our starting basic feasible solution.
Delete Kw and columns of artificial variables.
Apply standard simplex to this tableau with R2 as objective. (We call this phase 2).
(b) If for right entry of R_{w} is >0 then ow r original $L P$ is infeasible.

Note It could happen in $\sigma(a)$ that for right entry of R_{w} is zero, but sore artificial variable is basic (ie. appears on lett).
Then we connect immediately proceed to apply standard simplex.
Small, relatively easy step to deal with this but omitted here (and non-examinable).

Want you to get the main ideas and not be distracted by pathological situations.

Does simplex algaritum always terminate?

- Sometimes a pivot operation delos not change far right column, i.e. sometimes BFS stays unchanged and objective does net improve.
Example on next page.
- when we apply the rules ct simplex it con happen that we end up with exactly tie same tableau we saw earlier! This is called cu, cling. (example next page)
- By adjusting the "tie-break" rules, we con avoid this and ensure simplex always terminates. We omit the details here.

	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	
s_{1}	-2	1	1	0	0	0	0	0	1
s_{2}	$-\frac{3}{2}$	1	0	1	0	0	0	0	3
s_{3}	-1	1	0	0	1	0	0	0	5
s_{4}	$-\frac{3}{4}$	1	0	0	0	1	0	0	6
s_{5}	0	1	0	0	0	0	1	0	10
s_{6}	1	0	0	0	0	0	0	1	10
$-z$	0	1	0	0	0	0	0	0	0

	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	
x_{2}	-2	1	1	0	0	0	0	0	1
s_{2}	$\frac{1}{2}$	0	-1	1	0	0	0	0	2
s_{3}	1	0	-1	0	1	0	0	0	4
s_{4}	$\frac{5}{4}$	0	-1	0	0	1	0	0	5
s_{5}	2	0	-1	0	0	0	1	0	9
s_{6}	1	0	0	0	0	0	0	1	10
$-z$	2	0	-1	0	0	0	0	0	-1

	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	
x_{2}	0	1	-3	4	0	0	0	0	9
x_{1}	1	0	-2	2	0	0	0	0	4
s_{3}	0	0	1	-2	1	0	0	0	0
s_{4}	0	0	$\frac{3}{2}$	$-\frac{5}{2}$	0	1	0	0	0
s_{5}	0	0	3	-4	0	0	1	0	1
s_{6}	0	0	2	-2	0	0	0	1	6
$-z$	0	0	3	-4	0	0	0	0	-9

	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	
x_{2}	0	1	0	-2	3	0	0	0	9
x_{1}	1	0	0	-2	2	0	0	0	4
s_{1}	0	0	1	-2	1	0	0	0	0
s_{4}	0	0	0	$\frac{1}{2}$	$-\frac{3}{2}$	1	0	0	0
s_{5}	0	0	0	2	-3	0	1	0	1
s_{6}	0	0	0	2	-2	0	0	1	6
$-z$	0	0	0	2	-3	0	0	0	-9

	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	
x_{2}	0	1	0	0	-3	4	0	0	9
x_{1}	1	0	0	0	-4	4	0	0	4
s_{1}	0	0	1	0	-5	4	0	0	0
s_{2}	0	0	0	1	-3	2	0	0	0
s_{5}	0	0	0	0	3	-4	1	0	1
s_{6}	0	0	0	0	4	-4	0	1	6
$-z$	0	0	0	0	3	-4	0	0	-9

	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	
x_{2}	0	1	0	0	0	0	1	0	10
x_{1}	1	0	0	0	0	$-\frac{4}{3}$	$\frac{4}{3}$	0	$\frac{16}{3}$
s_{1}	0	0	1	0	0	$-\frac{8}{3}$	$\frac{5}{3}$	0	$\frac{5}{3}$
s_{2}	0	0	0	1	0	-2	1	0	1
s_{3}	0	0	0	0	1	$-\frac{4}{3}$	$\frac{1}{3}$	0	$\frac{1}{3}$
s_{6}	0	0	0	0	0	$\frac{4}{3}$	$-\frac{4}{3}$	1	$\frac{14}{3}$
$-z$	0	0	0	0	0	0	-1	0	-10

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	
x_{5}	0.5	-5.5	-2.5	9	1	0	0	0
x_{6}	0.5	-1.5	-0.5	1	0	1	0	0
x_{7}	1	0	0	0	0	0	1	1
$-z$	10	-57	-9	-24	0	0	0	0

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	
x_{1}	1	-11	-5	18	2	0	0	0
x_{6}	0	4	2	-8	-1	1	0	0
x_{7}	0	11	5	-18	-2	0	1	1
$-z$	0	53	41	-204	-20	0	0	0

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	
x_{1}	1	0	0.5	-4	-0.75	2.75	0	0
x_{2}	0	1	0.5	-2	-0.25	0.25	0	0
x_{7}	0	0	-0.5	4	0.75	-2.75	1	1
$-z$	0	0	14.5	-98	-6.75	-13.25	0	0

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	
x_{3}	2	0	1	-8	-1.5	5.5	0	0
x_{2}	-1	1	0	2	0.5	-2.5	0	0
x_{7}	1	0	0	0	0	0	1	1
$-z$	-29	0	0	18	15	-93	0	0

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	
x_{3}	-2	4	1	0	0.5	-4.5	0	0
x_{4}	-0.5	0.5	0	1	0.25	-1.25	0	0
x_{7}	1	0	0	0	0	0	1	1
$-z$	-20	-9	0	0	10.5	-70.5	0	0

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	
x_{5}	-4	8	2	0	1	-9	0	0
x_{4}	0.5	-1.5	-0.5	1	0	1	0	0
x_{7}	1	0	0	0	0	0	1	1
$-z$	22	-93	-21	0	0	24	0	0

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	
x_{5}	0.5	-5.5	-2.5	9	1	0	0	0
x_{6}	0.5	-1.5	-0.5	1	0	1	0	0
x_{7}	1	0	0	0	0	0	1	1
$-z$	10	-57	-9	-24	0	0	0	0

