
MTH6105 – Algorithmic Graph Theory Spring 2024

Problem Sheet 10 F. Fischer

You are expected to attempt all exercises before the seminar and to actively
participate in the seminar itself.

1. For each of the following two graphs, determine if the graph is bipartite. Justify
your answer.
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Solution: It is straightforward to verify that the graph on the left is bipartite with
parts L = {v1, v3, v5, v7, v9, v11, v13} and R = {v2, v4, v6, v8, v10, v12, v14}. The graph
on the right is not bipartite because it contains the cycle v1v2v3v4v14v1, which has
odd length.

2. Consider the following bipartite graph G.

u1 u2 u3 u4 u5 u6

v1 v2 v3 v4 v5 v6 v7 v8

(a) Show that M = {u1v1, u2v5, u3v7, u4v2} is a matching of G.

(b) Give an M -augmenting path of G.

(c) Give a maximum matching of G.
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Solution:

(a) M is a matching of G because M ⊆ E(G) and no vertex is an endpoint of more
than one edge in M .

(b) Let L = {u1, u2, u3, u4, u5, u6}, and let S = {u1, u2, u3, u4, v1, v2, v5, v7} be the
set of vertices saturated by M . For each x ∈ L\S = {u5, u6}, we can construct
a maximalM -alternating tree with root x. Such a tree with root u5 for example
looks as follows.
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Let T = (V (G) \ S) \ {u5}) = {v3, v4, v6, v8} be the set of vertices apart from
u5 that are contained in the tree with root u5 and are not saturated by M .
Then, for each t ∈ T , the unique u5−t-path in this tree is an M -augmenting
path. In particular, the path P = u5, v1, u1, v3 is an M -augmenting path.

(c) P is an M -augmenting path, so

M ′ = M△E(P ) = {u1v1, u2v5, u3v7, u4v2}△{u5v1, u1v1, u1v3}
= {u1v3, u2v5, u3v7, u4v2, u5v1}

is a matching of G with cardinality |M ′| = |M | + 1 = 5. To show that M ′ is
a maximum matching, we could repeat the procedure we used in Part (b) and
conclude that there is no M ′-augmenting path. As any matching of cardinality
greater than that of M ′ would have to saturate L, we can also use Hall’s
theorem to argue that such a matching cannot exist. Let

U = {u ∈ L : u not saturated by M ′} = {u6} and

X = {x ∈ L : there exists an M ′-alternating u−x-path in G, where u ∈ U}
= {u2, u3, u5, u6}

Then |N(X)| = |{v1, v5, v7}| = 3 < 4 = |X|, so by Hall’s theorem G does not
have a matching that saturates L. The cardinality of any matching of G is
therefore at most 5, which means that M ′ is a maximum matching of G.

3. A graph G is called k-regular, for k ∈ N, if dG(v) = k for all v ∈ V (G). Let G be a
k-regular bipartite graph G with parts L and R.

(a) Show that |L| = |R|.
(b) Show that the directed network (DG, cG) has an s−t-flow of size |L| = |R|.
(c) Show that G has a perfect matching.
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Solution:

(a) We have that

|L| = 1/k
∑
u∈L

dG(u) = 1/k
∑
v∈R

dG(v) = |R|,

where the first and third equalities holds because G is k-regular and the second
equality because G is bipartite.

(b) Let f : E(DG) → R such that for all u ∈ L and v ∈ R, f(su) = 1, f(uv) = 1/k,
and f(vt) = 1. It is straightforward to verify that f is an s−t-flow of (DG, cG)
and |f | = |L|.

(c) Since cG(e) ∈ N for all e ∈ E(DG), it follows from Theorem 6.16 that (DG, cG)
has a maximum s−t-flow g such that g(e) ∈ N for all e ∈ E(DG). In particular,
for such a flow, g(e) ∈ {0, 1} for all e ∈ E(DG). By Lemma 7.7, G has a
matching M with |M | = |g| ≥ |f | = |L|, where the inequality holds because
f is an s−t-flow of (DG, cG) and g is a maximum flow of (DG, cG), and the
second equality by Part (b). The only way for M to have cardinality |L| is for
it to saturate both L and R, so M must be a perfect matching.
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