You are expected to **attempt all exercises** before the seminar and to **actively participate** in the seminar itself.

1. Consider the following directed network.

- (a) Apply the Ford-Fulkerson algorithm to the network, drawing the residual network after each iteration.
- (b) Give a maximum $v_1 v_8$ -flow of the network.
- (c) Prove that the $v_1 v_8$ -flow you have found is indeed a maximum $v_1 v_8$ -flow.
- 2. Consider the following directed network.

Let g be the $v_1 - v_7$ -flow of this network with

$g(v_1v_2) = 7,$	$g(v_1v_3) = 2,$	$g(v_2v_3) = 2,$	$g(v_2v_4) = 4,$
$g(v_2v_5) = 1,$	$g(v_3v_4) = 1,$	$g(v_3v_6) = 3,$	$g(v_4v_5) = 3,$
$g(v_4v_6) = 2,$	$g(v_5v_6) = 0,$	$g(v_5v_7) = 4,$	$g(v_6v_7) = 5.$

- (a) Prove or disprove that g is a maximum $v_1 v_7$ -flow of the network.
- (b) Imagine that $c(v_3v_6)$ is decreased from 3 to 1. Does this affect the size of a maximum flow? Justify your answer.
- (c) Imagine that $c(v_3v_6)$ is increased from 3 to 4. Does this affect the size of a maximum flow? Justify your answer.