MTH6105 - Algorithmic Graph Theory
Problem Sheet 8

You are expected to attempt all exercises before the seminar and to actively participate in the seminar itself.

1. Consider the following directed network (D, c).

(a) For each of the following functions from $A(D)$ to \mathbb{R}, determine if the function is a $v_{1}-v_{8}$-flow of (D, c). If a function is a $v_{1}-v_{8}$-flow, give its size.
(i)

$$
\begin{array}{llll}
f_{1}\left(v_{1} v_{2}\right)=2, & f_{1}\left(v_{1} v_{3}\right)=2, & f_{1}\left(v_{2} v_{4}\right)=0, & f_{1}\left(v_{2} v_{5}\right)=2, \\
f_{1}\left(v_{3} v_{4}\right)=2, & f_{1}\left(v_{3} v_{7}\right)=0, & f_{1}\left(v_{4} v_{5}\right)=1, & f_{1}\left(v_{4} v_{6}\right)=1, \\
f_{1}\left(v_{5} v_{8}\right)=2, & f_{1}\left(v_{6} v_{5}\right)=1, & f_{1}\left(v_{6} v_{7}\right)=2, & f_{1}\left(v_{7} v_{8}\right)=2 .
\end{array}
$$

(ii)

$$
\begin{array}{llll}
f_{2}\left(v_{1} v_{2}\right)=2, & f_{2}\left(v_{1} v_{3}\right)=2, & f_{2}\left(v_{2} v_{4}\right)=2, & f_{2}\left(v_{2} v_{5}\right)=2, \\
f_{2}\left(v_{3} v_{4}\right)=0, & f_{2}\left(v_{3} v_{7}\right)=2, & f_{2}\left(v_{4} v_{5}\right)=1, & f_{2}\left(v_{4} v_{6}\right)=1, \\
f_{2}\left(v_{5} v_{8}\right)=4, & f_{2}\left(v_{6} v_{5}\right)=1, & f_{2}\left(v_{6} v_{7}\right)=2, & f_{2}\left(v_{7} v_{8}\right)=2 .
\end{array}
$$

(iii)

$$
\begin{array}{llll}
f_{3}\left(v_{1} v_{2}\right)=2, & f_{3}\left(v_{1} v_{3}\right)=4, & f_{3}\left(v_{2} v_{4}\right)=0, & f_{3}\left(v_{2} v_{5}\right)=2, \\
f_{3}\left(v_{3} v_{4}\right)=2, & f_{3}\left(v_{3} v_{7}\right)=2, & f_{3}\left(v_{4} v_{5}\right)=1, & f_{3}\left(v_{4} v_{6}\right)=1, \\
f_{3}\left(v_{5} v_{8}\right)=4, & f_{3}\left(v_{6} v_{5}\right)=1, & f_{3}\left(v_{6} v_{7}\right)=0, & f_{3}\left(v_{7} v_{8}\right)=2 .
\end{array}
$$

(iv)

$$
\begin{array}{llll}
f_{4}\left(v_{1} v_{2}\right)=2, & f_{4}\left(v_{1} v_{3}\right)=5, & f_{4}\left(v_{2} v_{4}\right)=4, & f_{4}\left(v_{2} v_{5}\right)=2, \\
f_{4}\left(v_{3} v_{4}\right)=3, & f_{4}\left(v_{3} v_{7}\right)=2, & f_{4}\left(v_{4} v_{5}\right)=1, & f_{4}\left(v_{4} v_{6}\right)=2, \\
f_{4}\left(v_{5} v_{8}\right)=5, & f_{4}\left(v_{6} v_{5}\right)=2, & f_{4}\left(v_{6} v_{7}\right)=0, & f_{4}\left(v_{7} v_{8}\right)=2 .
\end{array}
$$

(b) For each of the following subsets of $V(D)$, determine if the subset is a $v_{1}-v_{8}$-cut of (D, c). If a subset is a $v_{1}-v_{8}$-cut, give its capacity.
(i) $S_{1}=\left\{v_{3}, v_{4}, v_{7}\right\}$
(ii) $S_{2}=\left\{v_{1}, v_{3}, v_{4}, v_{7}\right\}$
(iii) $S_{3}=\left\{v_{1}, v_{3}, v_{7}, v_{8}\right\}$
(iv) $S_{4}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{7}\right\}$
(c) Use your answers to Parts (a) and (b) to find a maximum $v_{1}-v_{8}$-flow and a minimum $v_{1}-v_{8}$-cut of (D, c).

Solution:

(a) (i) Function f_{1} is not a $v_{1}-v_{8}$-flow because it violates the flow conservation constraint for $v_{5}: \sum_{e \in A_{D}^{-}\left(v_{5}\right)} f(e)=f\left(v_{2} v_{5}\right)+f\left(v_{4} v_{5}\right)+f\left(v_{6} v_{5}\right)=4 \neq 2=$ $f\left(v_{5} v_{8}\right)=\sum_{e \in A_{D}^{+}\left(v_{5}\right)} f(e)$.
(ii) Function f_{2} is not a $v_{1}-v_{8}$-flow because it violates the flow conservation constraint for $v_{2}: \sum_{e \in A_{D}^{-}\left(v_{2}\right)} f(e)=f\left(v_{1} v_{2}\right)=2 \neq 4=f\left(v_{2} v_{4}\right)+f\left(v_{2} v_{5}\right)=$ $\sum_{e \in A_{D}^{+}\left(v_{2}\right)} f(e)$.
(iii) Function f_{3} satisfies all capacity and flow conservation constraints and therefore is a $v_{1}-v_{8}$-flow. Its size is $\left|f_{3}\right|=\sum_{e \in A_{D}^{+}\left(V_{1}\right)} f(e)=f\left(v_{1} v_{2}\right)+$ $f\left(v_{1} v_{3}\right)=6$.
(iv) Function f_{4} is not a $v_{1}-v_{8}$-flow because it violates the capacity constraint for $v_{4} v_{6}: f\left(v_{4} v_{6}\right)=2>1=c\left(v_{4} v_{6}\right)$.
(b) (i) Set S_{1} is not a $v_{1}-v_{8}$-cut because $v_{1} \notin S_{1}$.
(ii) Set S_{2} is a $v_{1}-v_{8}$-cut because $v_{1} \in S_{2}$ and $v_{8} \in V(D) \backslash S_{2}$. Its capacity is $C\left(S_{2}\right)=\sum_{e \in A_{D}^{+}(S) \cap A_{D}^{-}(V(D) \backslash S)} c(e)=c\left(v_{1} v_{2}\right)+c\left(v_{4} v_{5}\right)+c\left(v_{4} v_{6}\right)+c\left(v_{7} v_{8}\right)=$ 6.
(iii) Set S_{3} is not a $v_{1}-v_{8}$-cut because $v_{8} \notin V(D) \backslash S_{3}$.
(iv) Set S_{4} is a $v_{1}-v_{8}$-cut because $v_{1} \in S_{2}$ and $v_{8} \in V(D) \backslash S_{2}$. Its capacity is $C\left(S_{4}\right)=\sum_{e \in A_{D}^{+}(S) \cap A_{D}^{-}(V(D) \backslash S)} c(e)=c\left(v_{4} v_{6}\right)+c\left(v_{5} v_{8}\right)+c\left(v_{7} v_{8}\right)=9$.
(c) The $v_{1}-v_{8}$-flow f_{3} and the $v_{1}-v_{8}$-cut S_{2} satisfy $\left|f_{3}\right|=C\left(S_{2}\right)$. Thus, by Corollary 6.5 in the notes, f_{3} is a maximum $v_{1}-v_{8}$-flow and S_{2} a minimum $v_{1}-v_{8}$-cut.
2. Consider the following directed network (D, c).

(a) Let g_{1} be the $v_{1}-v_{7}$-flows of (D, c) with

$$
\begin{array}{llll}
g_{1}\left(v_{1} v_{2}\right)=7, & g_{1}\left(v_{1} v_{3}\right)=1, & g_{1}\left(v_{2} v_{3}\right)=1, & g_{1}\left(v_{2} v_{4}\right)=3, \\
g_{1}\left(v_{2} v_{5}\right)=3, & g_{1}\left(v_{3} v_{4}\right)=2, & g_{1}\left(v_{3} v_{6}\right)=0, & g_{1}\left(v_{4} v_{5}\right)=3, \\
g_{1}\left(v_{4} v_{6}\right)=2, & g_{1}\left(v_{5} v_{6}\right)=2, & g_{1}\left(v_{5} v_{7}\right)=4, & g_{1}\left(v_{6} v_{7}\right)=4 .
\end{array}
$$

(i) Draw the residual network for (D, c) and g_{1}.
(ii) Give two distinct g_{1}-augmenting $v_{1}-v_{7}$-paths, along with their residual capacities.
(b) Let g_{2} be the $v_{1}-v_{7}$-flows of (D, c) with

$$
\begin{array}{llll}
g_{2}\left(v_{1} v_{2}\right)=7, & g_{2}\left(v_{1} v_{3}\right)=4, & g_{2}\left(v_{2} v_{3}\right)=0, & g_{2}\left(v_{2} v_{4}\right)=2, \\
g_{2}\left(v_{2} v_{5}\right)=5, & g_{2}\left(v_{3} v_{4}\right)=2, & g_{2}\left(v_{3} v_{6}\right)=2, & g_{2}\left(v_{4} v_{5}\right)=2, \\
g_{2}\left(v_{4} v_{6}\right)=2, & g_{2}\left(v_{5} v_{6}\right)=0, & g_{2}\left(v_{5} v_{7}\right)=7, & g_{2}\left(v_{6} v_{7}\right)=4 .
\end{array}
$$

(i) Draw the residual network for (D, c) and g_{2}.
(ii) Give a g_{2}-augmenting $v_{1}-v_{7}$-path.
(iii) Show that g_{2} is not a maximum $v_{1}-v_{7}$-flow of (D, c), by giving a $v_{1}-v_{7}$-flow g_{3} with $\left|g_{3}\right|>\left|g_{2}\right|$.

Solution:

(a) (i) The residual network looks as follows.

(ii) The g_{1}-augmenting $v_{1}-v_{7}$-paths include $v_{1}, v_{3}, v_{2}, v_{5}, v_{7}$, which has residual capacity

$$
\min \left\{c_{g_{1}}\left(v_{1} v_{3}\right), c_{g_{1}}\left(v_{3} v_{2}\right), c_{g_{1}}\left(v_{2} v_{5}\right), c_{g_{1}}\left(v_{5} v_{7}\right)\right\}=1,
$$

and $v_{1}, v_{3}, v_{6}, v_{5}, v_{7}$, which has residual capacity

$$
\min \left\{c_{g_{1}}\left(v_{1} v_{3}\right), c_{g_{1}}\left(v_{3} v_{6}\right), c_{g_{1}}\left(v_{6} v_{5}\right), c_{g_{1}}\left(v_{5} v_{7}\right)\right\}=2 .
$$

(b) (i) The residual network looks as follows.

(ii) The unique g_{2}-augmenting $v_{1}-v_{7}$-path is $P=v_{1}, v_{3}, v_{6}, v_{4}, v_{5}, v_{7}$.

