F. Fischer

You are expected to **attempt all exercises** before the seminar and to **actively participate** in the seminar itself.

1. Consider the following directed network (D, c).

(a) For each of the following functions from A(D) to \mathbb{R} , determine if the function is a v_1-v_8 -flow of (D,c). If a function is a v_1-v_8 -flow, give its size.

(i)
$$f_1(v_1v_2) = 2$$
, $f_1(v_1v_3) = 2$, $f_1(v_2v_4) = 0$, $f_1(v_2v_5) = 2$, $f_1(v_3v_4) = 2$, $f_1(v_3v_7) = 0$, $f_1(v_4v_5) = 1$, $f_1(v_4v_6) = 1$, $f_1(v_5v_8) = 2$, $f_1(v_6v_5) = 1$, $f_1(v_6v_7) = 2$, $f_1(v_7v_8) = 2$.

(ii)
$$f_2(v_1v_2) = 2$$
, $f_2(v_1v_3) = 2$, $f_2(v_2v_4) = 2$, $f_2(v_2v_5) = 2$, $f_2(v_3v_4) = 0$, $f_2(v_3v_7) = 2$, $f_2(v_4v_5) = 1$, $f_2(v_4v_6) = 1$, $f_2(v_5v_8) = 4$, $f_2(v_6v_5) = 1$, $f_2(v_6v_7) = 2$, $f_2(v_7v_8) = 2$.

(iii)
$$f_3(v_1v_2) = 2$$
, $f_3(v_1v_3) = 4$, $f_3(v_2v_4) = 0$, $f_3(v_2v_5) = 2$, $f_3(v_3v_4) = 2$, $f_3(v_3v_7) = 2$, $f_3(v_4v_5) = 1$, $f_3(v_4v_6) = 1$, $f_3(v_5v_8) = 4$, $f_3(v_6v_5) = 1$, $f_3(v_6v_7) = 0$, $f_3(v_7v_8) = 2$.

(iv)
$$f_4(v_1v_2) = 2$$
, $f_4(v_1v_3) = 5$, $f_4(v_2v_4) = 4$, $f_4(v_2v_5) = 2$, $f_4(v_3v_4) = 3$, $f_4(v_3v_7) = 2$, $f_4(v_4v_5) = 1$, $f_4(v_4v_6) = 2$, $f_4(v_5v_8) = 5$, $f_4(v_6v_5) = 2$, $f_4(v_6v_7) = 0$, $f_4(v_7v_8) = 2$.

(b) For each of the following subsets of V(D), determine if the subset is a v_1-v_8 -cut of (D, c). If a subset is a v_1-v_8 -cut, give its capacity.

(i)
$$S_1 = \{v_3, v_4, v_7\}$$

(ii)
$$S_2 = \{v_1, v_3, v_4, v_7\}$$

(iii)
$$S_3 = \{v_1, v_3, v_7, v_8\}$$

(iv)
$$S_4 = \{v_1, v_2, v_3, v_4, v_5, v_7\}$$

(c) Use your answers to Parts (a) and (b) to find a maximum v_1-v_8 -flow and a minimum v_1-v_8 -cut of (D,c).

Solution:

- (a) (i) Function f_1 is not a v_1-v_8 -flow because it violates the flow conservation constraint for v_5 : $\sum_{e\in A_D^-(v_5)} f(e) = f(v_2v_5) + f(v_4v_5) + f(v_6v_5) = 4 \neq 2 = f(v_5v_8) = \sum_{e\in A_D^+(v_5)} f(e)$.
 - (ii) Function f_2 is not a v_1-v_8 -flow because it violates the flow conservation constraint for v_2 : $\sum_{e\in A_D^-(v_2)} f(e) = f(v_1v_2) = 2 \neq 4 = f(v_2v_4) + f(v_2v_5) = \sum_{e\in A_D^+(v_2)} f(e)$.
 - (iii) Function f_3 satisfies all capacity and flow conservation constraints and therefore is a v_1-v_8 -flow. Its size is $|f_3| = \sum_{e \in A_D^+(V_1)} f(e) = f(v_1v_2) + f(v_1v_3) = 6$.
 - (iv) Function f_4 is not a v_1-v_8 -flow because it violates the capacity constraint for v_4v_6 : $f(v_4v_6) = 2 > 1 = c(v_4v_6)$.
- (b) (i) Set S_1 is not a v_1-v_8 -cut because $v_1 \notin S_1$.
 - (ii) Set S_2 is a v_1-v_8 -cut because $v_1 \in S_2$ and $v_8 \in V(D) \setminus S_2$. Its capacity is $C(S_2) = \sum_{e \in A_D^+(S) \cap A_D^-(V(D) \setminus S)} c(e) = c(v_1v_2) + c(v_4v_5) + c(v_4v_6) + c(v_7v_8) = 6$.
 - (iii) Set S_3 is not a v_1-v_8 -cut because $v_8 \notin V(D) \setminus S_3$.
 - (iv) Set S_4 is a v_1-v_8 -cut because $v_1 \in S_2$ and $v_8 \in V(D) \setminus S_2$. Its capacity is $C(S_4) = \sum_{e \in A_D^+(S) \cap A_D^-(V(D) \setminus S)} c(e) = c(v_4v_6) + c(v_5v_8) + c(v_7v_8) = 9$.
- (c) The v_1-v_8 -flow f_3 and the v_1-v_8 -cut S_2 satisfy $|f_3|=C(S_2)$. Thus, by Corollary 6.5 in the notes, f_3 is a maximum v_1-v_8 -flow and S_2 a minimum v_1-v_8 -cut.
- 2. Consider the following directed network (D, c).

(a) Let g_1 be the v_1-v_7 -flows of (D,c) with

$$g_1(v_1v_2) = 7,$$
 $g_1(v_1v_3) = 1,$ $g_1(v_2v_3) = 1,$ $g_1(v_2v_4) = 3,$
 $g_1(v_2v_5) = 3,$ $g_1(v_3v_4) = 2,$ $g_1(v_3v_6) = 0,$ $g_1(v_4v_5) = 3,$
 $g_1(v_4v_6) = 2,$ $g_1(v_5v_6) = 2,$ $g_1(v_5v_7) = 4,$ $g_1(v_6v_7) = 4.$

- (i) Draw the residual network for (D, c) and g_1 .
- (ii) Give two distinct g_1 -augmenting v_1-v_7 -paths, along with their residual capacities.

(b) Let g_2 be the v_1-v_7 -flows of (D,c) with

$$g_2(v_1v_2) = 7,$$
 $g_2(v_1v_3) = 4,$ $g_2(v_2v_3) = 0,$ $g_2(v_2v_4) = 2,$ $g_2(v_2v_5) = 5,$ $g_2(v_3v_4) = 2,$ $g_2(v_3v_6) = 2,$ $g_2(v_4v_5) = 2,$ $g_2(v_4v_6) = 2,$ $g_2(v_5v_6) = 0,$ $g_2(v_5v_7) = 7,$ $g_2(v_6v_7) = 4.$

- (i) Draw the residual network for (D, c) and g_2 .
- (ii) Give a g_2 -augmenting v_1-v_7 -path.
- (iii) Show that g_2 is not a maximum v_1-v_7 -flow of (D, c), by giving a v_1-v_7 -flow g_3 with $|g_3| > |g_2|$.

Solution:

(a) (i) The residual network looks as follows.

(ii) The g_1 -augmenting v_1-v_7 -paths include v_1, v_3, v_2, v_5, v_7 , which has residual capacity

$$\min\{c_{g_1}(v_1v_3),c_{g_1}(v_3v_2),c_{g_1}(v_2v_5),c_{g_1}(v_5v_7)\}=1,$$

and v_1, v_3, v_6, v_5, v_7 , which has residual capacity

$$\min\{c_{g_1}(v_1v_3), c_{g_1}(v_3v_6), c_{g_1}(v_6v_5), c_{g_1}(v_5v_7)\} = 2.$$

(b) (i) The residual network looks as follows.

(ii) The unique g_2 -augmenting v_1-v_7 -path is $P=v_1,v_3,v_6,v_4,v_5,v_7$.