You are expected to **attempt all exercises** before the seminar and to **actively participate** in the seminar itself.

1. Consider the following directed network (D, c).

(a) For each of the following functions from A(D) to \mathbb{R} , determine if the function is a v_1-v_8 -flow of (D, c). If a function is a v_1-v_8 -flow, give its size.

(1)	$f_1(v_1v_2) = 2, f_1(v_3v_4) = 2, f_1(v_5v_8) = 2, $	$f_1(v_1v_3) = 2, f_1(v_3v_7) = 0, f_1(v_6v_5) = 1,$	$f_1(v_2v_4) = 0, f_1(v_4v_5) = 1, f_1(v_6v_7) = 2,$	$f_1(v_2v_5) = 2, f_1(v_4v_6) = 1, f_1(v_7v_8) = 2.$
(ii)	$f_2(v_1v_2) = 2, f_2(v_3v_4) = 0, f_2(v_5v_8) = 4,$	$f_2(v_1v_3) = 2, f_2(v_3v_7) = 2, f_2(v_6v_5) = 1,$	$f_2(v_2v_4) = 2, f_2(v_4v_5) = 1, f_2(v_6v_7) = 2,$	$f_2(v_2v_5) = 2, f_2(v_4v_6) = 1, f_2(v_7v_8) = 2.$
(iii)	$f_3(v_1v_2) = 2, f_3(v_3v_4) = 2, f_3(v_5v_8) = 4,$	$f_3(v_1v_3) = 4, f_3(v_3v_7) = 2, f_3(v_6v_5) = 1,$	$f_3(v_2v_4) = 0, f_3(v_4v_5) = 1, f_3(v_6v_7) = 0,$	$f_3(v_2v_5) = 2, f_3(v_4v_6) = 1, f_3(v_7v_8) = 2.$
(iv)	$f_4(v_1v_2) = 2, f_4(v_3v_4) = 3, f_4(v_5v_8) = 5, $	$f_4(v_1v_3) = 5, f_4(v_3v_7) = 2, f_4(v_6v_5) = 2, $	$f_4(v_2v_4) = 4, f_4(v_4v_5) = 1, f_4(v_6v_7) = 0,$	$f_4(v_2v_5) = 2, f_4(v_4v_6) = 2, f_4(v_7v_8) = 2.$

- (b) For each of the following subsets of V(D), determine if the subset is a v_1-v_8 -cut of (D, c). If a subset is a v_1-v_8 -cut, give its capacity.
 - (i) $S_1 = \{v_3, v_4, v_7\}$
 - (ii) $S_2 = \{v_1, v_3, v_4, v_7\}$
 - (iii) $S_3 = \{v_1, v_3, v_7, v_8\}$
 - (iv) $S_4 = \{v_1, v_2, v_3, v_4, v_5, v_7\}$
- (c) Use your answers to Parts (a) and (b) to find a maximum v_1-v_8 -flow and a minimum v_1-v_8 -cut of (D, c).

2. Consider the following directed network (D, c).

(a) Let g_1 be the v_1-v_7 -flows of (D, c) with

$g_1(v_1v_2) = 7,$	$g_1(v_1v_3) = 1,$	$g_1(v_2v_3) = 1,$	$g_1(v_2v_4) = 3,$
$g_1(v_2v_5) = 3,$	$g_1(v_3v_4) = 2,$	$g_1(v_3v_6) = 0,$	$g_1(v_4v_5) = 3,$
$g_1(v_4v_6) = 2,$	$g_1(v_5v_6) = 2,$	$g_1(v_5v_7) = 4,$	$g_1(v_6v_7) = 4.$

- (i) Draw the residual network for (D, c) and g_1 .
- (ii) Give two distinct g_1 -augmenting v_1-v_7 -paths, along with their residual capacities.
- (b) Let g_2 be the v_1-v_7 -flows of (D, c) with

$g_2(v_1v_2) = 7,$	$g_2(v_1v_3) = 4,$	$g_2(v_2v_3) = 0,$	$g_2(v_2v_4) = 2,$
$g_2(v_2v_5) = 5,$	$g_2(v_3v_4) = 2,$	$g_2(v_3v_6) = 2,$	$g_2(v_4v_5)=2,$
$g_2(v_4v_6) = 2,$	$g_2(v_5v_6) = 0,$	$g_2(v_5v_7) = 7,$	$g_2(v_6v_7) = 4.$

- (i) Draw the residual network for (D, c) and g_2 .
- (ii) Give a g_2 -augmenting v_1-v_7 -path.
- (iii) Show that g_2 is not a maximum $v_1 v_7$ -flow of (D, c), by giving a $v_1 v_7$ -flow g_3 with $|g_3| > |g_2|$.