Please fill in feedback questionnaire an QMplus!

Recap quiz
An LP max $\underline{C}^{\top} \underline{x}$
sub to $A \underline{x}=\underline{b}, \underline{x} \geqslant 0$
is called \qquad if, for every $k \geqslant 0$ there exists a \qquad x such that \qquad $\geqslant k$

Suppose we apply Simplex to above LP and final tablean is

	x_{1}	x_{2}	s_{1}	s_{2}	
s_{1}	1	-3	1	0	3
s_{2}	0	-8	2	1	10
	0	11	-3	0	-9

What is the next step?

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	
s_{1}	-1	0	0	1	0	6
x_{3}	$\frac{3}{4}$	$\frac{1}{2}$	1	0	0	$\frac{3}{2}$
s_{2}	$\frac{1}{2}$	-3	0	0	1	3
$-z$	4	11	0	0	0	-12

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	
s_{1}	-1	0	0	1	0	6
x_{2}	$\frac{3}{2}$	1	2	0	0	3
s_{2}	5	0	6	0	1	12
$-z$	$-\frac{25}{2}$	0	-22	0	0	-45

Q: we found optimal solution for (B) with objective value 0 . (in phase 1).
what would it mean for (A) if instead
(i) (B) had optimal solution whore objective was not zero
(ii) (B) was infeasible
(iii) (B) was unbounded
(A)

$$
\begin{array}{ll}
\operatorname{maximine} \quad 10 x_{1}+15 x_{2}+8 x_{3} \\
\text { sub to } \quad 8 x_{1}+6 x_{2}+12 x_{3}+s_{1} & =24 \\
-4 x_{1}-6 x_{2}-6 x_{3}+s_{2} & =-6 \\
& 6 x_{1}+4 x_{2}+8 x_{3} \\
& =12 \\
x_{1}, x_{2}, x_{3}, s_{1}, s_{2} \geqslant 0 .
\end{array}
$$

(B) $\max -a_{1}-a_{2}$
sub to $8 x_{1}+6 x_{2}+12 x_{3}+s_{1}=24$

$$
\begin{aligned}
-4 x_{1}-6 x_{2}-6 x_{3}+s_{2}-a_{1} & =-6 \\
6 x_{1}+4 x_{2}+8 x_{3} & +a_{2}
\end{aligned}=12
$$

Formal description of 2-phase simplex
(1) Given $L P$ transform into standard equation farm with slack variables just as before
(2)- If there is constraint with a slack variable s and $b<0$

$$
\text { say } a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}+s=b
$$

then replace with $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}+s-a=b$

- If there is constraint with no slack variable

$$
\text { say } \quad a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

then replace with $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}+a^{\prime}=b$
Here a, a^{\prime} are artificial variables with sign restriction $a, a^{\prime} \geqslant 0$ Each replaced constraint gets a different artificial variable.
(3) Form initial tableau as betcre except

- variables on the lett

If a constraint has an artificial variable, put it on the left
It a constraint has no artificial variable, put its slack variable on the left
(Recall variables listed on the lett are the basic variables in cur current basic feasible solution)

- Two rows below the line
we have a row Ru for our phase 1 objective which has a - 1 for each artificial variable and zeros every where else
we have a row R_{2} for our LP objective just as betare.
(4) Bring tableau into valid form so that each artificial variable has a single 1 and all other zeros in its column
Dc this as follows:
(a) Ignaing R_{2} and R_{w}

Multiply rows by - I where necessong se that each artificial variable has in its column (above the line) a single 1 (rather than -1)
(b) Every row with an artificial variable on the left is added to R_{w} (tc remove - i's in columns of artificial variables).

(5) Nav apply standard simplex treating Rw as our objective.
(When clearing a column in a pivot, we also make
(6) Sure we clear the column entry in R_{2}).
(a) If far right entry of R_{w} is 0 then have found our starting basic feasible solution.
Delete Kw and columns of artificial variables.
Apply standard simplex to this tableau with R_{2} as objective. (We call this phase 2).
(6) (a) If far right entry of R_{w} is 0 then have found our starting basic feasible solution.
Delete Kw and columns of artificial variables.
Apply standard simplex to this tableau with R2 as objective. (We call this phase 2).
(b) If for right entry of R_{w} is >0 then ow r original $L P$ is infeasible.

Note It could happen in $\sigma(a)$ that for right entry of R_{w} is zero, but sore artificial variable is basic (ie. appears on lett).
Then we connect immediately proceed to apply standard simplex.
Small, relatively easy step to deal with this but omitted here (and non-examinable).

Want you to get the main ideas and not be distracted by pathological situations.

Does simplex algaritum always terminate?

- Sometimes a pivot operation delos not change far right column, i.e. sometimes BFS stays unchanged and objective does net improve.
Example on next page.
- when we apply the rules ct simplex it con happen that we end up with exactly tie same tableau we saw earlier! This is called cu, cling. (example next page)
- By adjusting the "tie-break" rules, we con avoid this and ensure simplex always terminates. We omit the details here.

	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	
s_{1}	-2	1	1	0	0	0	0	0	1
s_{2}	$-\frac{3}{2}$	1	0	1	0	0	0	0	3
s_{3}	-1	1	0	0	1	0	0	0	5
s_{4}	$-\frac{3}{4}$	1	0	0	0	1	0	0	6
s_{5}	0	1	0	0	0	0	1	0	10
s_{6}	1	0	0	0	0	0	0	1	10
$-z$	0	1	0	0	0	0	0	0	0

	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	
x_{2}	-2	1	1	0	0	0	0	0	1
s_{2}	$\frac{1}{2}$	0	-1	1	0	0	0	0	2
s_{3}	1	0	-1	0	1	0	0	0	4
s_{4}	$\frac{5}{4}$	0	-1	0	0	1	0	0	5
s_{5}	2	0	-1	0	0	0	1	0	9
s_{6}	1	0	0	0	0	0	0	1	10
$-z$	2	0	-1	0	0	0	0	0	-1

	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	
x_{2}	0	1	-3	4	0	0	0	0	9
x_{1}	1	0	-2	2	0	0	0	0	4
s_{3}	0	0	1	-2	1	0	0	0	0
s_{4}	0	0	$\frac{3}{2}$	$-\frac{5}{2}$	0	1	0	0	0
s_{5}	0	0	3	-4	0	0	1	0	1
s_{6}	0	0	2	-2	0	0	0	1	6
$-z$	0	0	3	-4	0	0	0	0	-9

	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	
x_{2}	0	1	0	-2	3	0	0	0	9
x_{1}	1	0	0	-2	2	0	0	0	4
s_{1}	0	0	1	-2	1	0	0	0	0
s_{4}	0	0	0	$\frac{1}{2}$	$-\frac{3}{2}$	1	0	0	0
s_{5}	0	0	0	2	-3	0	1	0	1
s_{6}	0	0	0	2	-2	0	0	1	6
$-z$	0	0	0	2	-3	0	0	0	-9

	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	
x_{2}	0	1	0	0	-3	4	0	0	9
x_{1}	1	0	0	0	-4	4	0	0	4
s_{1}	0	0	1	0	-5	4	0	0	0
s_{2}	0	0	0	1	-3	2	0	0	0
s_{5}	0	0	0	0	3	-4	1	0	1
s_{6}	0	0	0	0	4	-4	0	1	6
$-z$	0	0	0	0	3	-4	0	0	-9

	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	
x_{2}	0	1	0	0	0	0	1	0	10
x_{1}	1	0	0	0	0	$-\frac{4}{3}$	$\frac{4}{3}$	0	$\frac{16}{3}$
s_{1}	0	0	1	0	0	$-\frac{8}{3}$	$\frac{5}{3}$	0	$\frac{5}{3}$
s_{2}	0	0	0	1	0	-2	1	0	1
s_{3}	0	0	0	0	1	$-\frac{4}{3}$	$\frac{1}{3}$	0	$\frac{1}{3}$
s_{6}	0	0	0	0	0	$\frac{4}{3}$	$-\frac{4}{3}$	1	$\frac{14}{3}$
$-z$	0	0	0	0	0	0	-1	0	-10

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	
x_{5}	0.5	-5.5	-2.5	9	1	0	0	0
x_{6}	0.5	-1.5	-0.5	1	0	1	0	0
x_{7}	1	0	0	0	0	0	1	1
$-z$	10	-57	-9	-24	0	0	0	0

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	
x_{1}	1	-11	-5	18	2	0	0	0
x_{6}	0	4	2	-8	-1	1	0	0
x_{7}	0	11	5	-18	-2	0	1	1
$-z$	0	53	41	-204	-20	0	0	0

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	
x_{1}	1	0	0.5	-4	-0.75	2.75	0	0
x_{2}	0	1	0.5	-2	-0.25	0.25	0	0
x_{7}	0	0	-0.5	4	0.75	-2.75	1	1
$-z$	0	0	14.5	-98	-6.75	-13.25	0	0

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	
x_{3}	2	0	1	-8	-1.5	5.5	0	0
x_{2}	-1	1	0	2	0.5	-2.5	0	0
x_{7}	1	0	0	0	0	0	1	1
$-z$	-29	0	0	18	15	-93	0	0

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	
x_{3}	-2	4	1	0	0.5	-4.5	0	0
x_{4}	-0.5	0.5	0	1	0.25	-1.25	0	0
x_{7}	1	0	0	0	0	0	1	1
$-z$	-20	-9	0	0	10.5	-70.5	0	0

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	
x_{5}	-4	8	2	0	1	-9	0	0
x_{4}	0.5	-1.5	-0.5	1	0	1	0	0
x_{7}	1	0	0	0	0	0	1	1
$-z$	22	-93	-21	0	0	24	0	0

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	
x_{5}	0.5	-5.5	-2.5	9	1	0	0	0
x_{6}	0.5	-1.5	-0.5	1	0	1	0	0
x_{7}	1	0	0	0	0	0	1	1
$-z$	10	-57	-9	-24	0	0	0	0

