Maximum Likelihood Estimation

(Statistical Modelling 1)
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Estimating Parameters

So far in this module we have used Least Squares estimation to estimate
model parameters 3y and f;.

You can check back to your week 1 notes for how we did this
@ in summary we minimised the sum of squares of errors
@ this involved differentiation and simultaneous equations

There are other methods for estimating parameters. We will now consider one called
Maximum Likelihood Estimation.
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What is a MLE?

The maximum likelihood estimator
6 for a parameter 6, is the estimate
which maximises the probability of
obtaining the sample we have
actually observed

The maximum likelihood estimator
is the parameter estimate that
maximises the “likelihood function”
which is the joint probability
function [discrete distribution] or
joint pdf [continuous] of the
observed sample
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Likelihood function

Definition: Let Yi, Y5, Y3, .-, Y, be a random sample from a distribution with a parameter
6. In general, 6 can be a vector,0 = (01,05, ,0k).
Suppose that yi, ys, - , ¥, are the observed values of Y7, Yo, -+, Y,. If Y; s are discrete

random variables, we define the likelihood function as the probability of the observed sample as
a function of

Liys,y2,- - ,ym0) =P(Yi=y1,Yo=yo, -, Ya = ¥ni0) = Pyivyovy (Y1, Y2, -, Ymi 0).

If Y;'s are jointly continuous, then the likelihood function is defined as

L(yla s Ym 9) =
In most of the cases, its easier to work with the log Likelihood function given by
Py
|0€L(}/17)/2a"' >Yn;9) \(“Q'!

Queen Mary

Universiy of London




Likelihood function
Example:
1. If X; ~ Binomial(3,6), then
Py, (z;6) = (i)m(l —g)*=

Thus,

L(z1,z2,23,24;0) = Px,x,x,x, (21, 22, T3, 243 6)
= Py, (x1;0) Px,(x2;0) Px, (x3;0) Px, (24;0)

_ 3 3 3 3 GELT Tt (1 = 6)127(11+EZ+I3+I4) .
ay To T3 T4

Since we have observed (21, x3, 23, 24) = (1,3,2,2), we have

L(1,3,2,2;6) = G) (2) (Z) (2)98(1 —6)*

=27  (1-0)*
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Likelihood Estimator

Example:
2. If X; ~ Ezponential(0), then

Fx.(2;0) = 0 u(z),

where u(z) is the unit step function, i.e., u(z) = 1 for z > 0 and u(z) = 0 for z < 0. Thus
for z; > 0, we can write

L(xy,a, x3,24;0) = fx, x,x,x,(T1, T2, T3, 74;0)
= fx,(21;0)fx,(x2;0) fx,(23;0) fx, (24 0)
_ 948—(I1+x2+1‘3+14)9.

Since we have observed (1, z2, 23, 24) = (1.23,3.32,1.98,2.12), we have

L(1.23,3.32,1.98,2.12;0) = ¢'e 5%,

’
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Maximising the Likelihood function

Likelihood function

More generally for probability distributions we maximise the joint probability of
our observations by maximising the Likelihood function L(6, y)

L(6,y) = [1iz1 f(vil0)
for discrete observations this becomes
L(6,y) = i, Pr(Y; = ¥;10)

The maximum likelihood estimator 8 is the value of 8 which maximises the
Likelihood function




Maximising the Likelihood function

Process of Maximising the Likelihood function

We differentiate the likelihood function with respect to the parameter(s) and set
to zero, solving to find the maximum

> Last time in Least Squares we solved for a minimum

For most probability distributions it is much easier to take the log of the
likelihood function and differentiate that

> Because the likelihood is the product of probability terms
> log L(6, y) will be maximised at the same @ as L(6,y)




Maximising the Likelihood function

Exponential Example

For the following observations, find the maximum likelihood estimator (MLE) of 6.

Xi ~ Exponential(m, #) and we have observed Xi, Xz, X3,--- , X,

L(x1, %2, ,Xn; 0) =
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Maximising the Likelihood function

Binomial Example

n binomial trials where y; = 1 if the it trial is a success and y; = 0 otherwise

Let the probability of a success be p
° p is unknown
> We seek to estimate p by MLE finding p

Lety = X[, y; the total number of successful trials

We first need to find the likelihood function which is the joint probability
function for the n trials
» This is a function of p




Maximising the Likelihood function

Binomial Example

L(p) =L(y1 - yulp) = p? A =p)"7
As L(p) is a product of functions, it will be easier to differentiate log
logL(p) = log(p”(1 —p)"*™?)

= ylog(p) + (n — y)log(1 —p)
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Maximising the Likelihood function

Binomial MLE

dlogL(p) _

1 -1
= yo =y

Set to zero and solve for p

1 -1
3’5+(n—3’)?ﬁ—0
y_nvy_

P 1-p 0

5o 2

p_ n




Maximising the Likelihood function

Binomial MLE

So the Binomial MLE is the proportion of successful trials observed

which is a natural estimate
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Maximising the Likelihood function

Key properties of MLEs

The Binomial example highlights the key properties of maximum likelihood

estimators
> and hence their advantages / disadvantages

With the Binomial MLE p = %we would expect the quality of the estimate to
improve as n increases

We say that the estimator has strong asymptotic properties

Thatisasn - o=




Maximising the Likelihood function

Advantages / Disadvantages of MLEs

~ Asymptotically
unbiased

Normally
distributed

Smallest possible
variance

_

At small n may be
biased

Asymptotic
properties may not
apply at all n
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Maximising the Likelihood function

MLE in the Normal distribution

We need this to use MLE in the simple linear regression model

For a normal distribution with mean u and variance o2 we estimate y by MLE

Start with the normal pdf

fOI) = —=exp (- (v — w?)

Then the Likelihood function is the joint pdf for our n observations




Maximising the Likelihood function

Normal likelihood function

1 1
fOl) = —=exp(-5s5 (- w?)
Remember we seek a MLE of u
_ L L AT
L(nu'ly) - Jn(ZTE)n/Z exp( 20.22 (y M) )

And taking logs

logL = —log(¢"(2m%) - 25X (v - w?
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Maximising the Likelihood function

Finding the maximum

logl = —log(o™(2m)%) - 75 (v — w7’

202
Differentiating with respect to the parameter

dlogL

” Z(y 1)

Which equals zerowhen i = y

So the MLE of the normal mean is the sample mean




Maximising the Likelihood function
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Maximising the Likelihood function

Normal simple linear regression model

In the simple linear regression model instead of Y;~ N(u, 0?)
we now have Y;~ N(B, + B;x;,02)

we seek to estimate 3, and B; by MLE

the Likelihood function is the same normal one but with y replaced by our
model Sy + B1x;




Maximising the Likelihood function

Simple Linear Regression Likelihood

The likelihood is now a function of our two model parameters

L(Bo, 1. ¥i) = mexp (‘%E (i — Bo + B1x)?)

We could solve this in the usual MLE way
o take logs
o Differentiate log L with respect to fy and 51

o set to zero and solve the two simultaneous equations




Maximising the Likelihood function
But we don’t have to ©

_ 1 1 2
Lo, 1, yi) = S7gmwr €XP (—EZ i — Bo + B1x; )?)
is maximised wherever
- X i — Po+ B1xi)?
is maximised (because n and ¢ are fixed here)

L] We already know where this is from Least Squares estimation




Maximising the Likelihood function
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Maximising the Likelihood function
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Maximising the Likelihood function
Simple Linear Regression Model

Least ~ Maximum

Squares Likelihood
Estimators Estimators
This is not usual in model parameter estimation, we generally have to select one of the methods \E@
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Maximising the Likelihood function

Exams Style Questions

Question (2022)

Let X1, X5, , Xy be random variables from a normal distribution with unknown
mean 4 and unknown variance 0. We are interested in finding the maximum
likelihood estlmates of 11 and o2. Let /i and o2 be the maximum likelihood estimates
for ;1 and 2. The probability density function of x; is given by

Fxis 1, 02) = ——_ ezt Cin)

for —oco < pp < 00,0< 0’ <ocand i=1,2,---n
Prove that

DX 5 ia(xi — )

e et S d 2 — =1t P Iy

n and.a n ‘C,Q’)’I
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Maximising the Likelihood function

Solution:
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