1. Suppose that (X, d) is a metric space and $A \subseteq X$. Show that if $A \subseteq F \subseteq X$ where F is closed, then $\bar{A} \subseteq F$, where \bar{A} is the closure of A.
\bar{A} is defined as the intersection of all closed subsets containing A. Thus $\bar{A} \subset F$.
2. Let $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$, where $\mathbb{N}=\{1,2,3, \ldots\}$. Determine \bar{A}. Is A closed?

The closure \bar{A} equals $\{0\} \cup A$. The set A is not closed as it is not equal to its closure.
3. Let (X, d) be a metric space and $A \subset X$. Then the distance from x to A is defined as

$$
\operatorname{dist}(x, A)=\inf \{d(x, a): a \in A\} .
$$

Prove that $\bar{A}=\{x \in X ; \operatorname{dist}(x, A)=0\}$.

Suppose that $x \in \bar{A}$. Then there exists a sequence $a_{n} \in A$ converging to x. Then $\lim d\left(a_{n}, x\right)=0$ implying that $\inf \{d(x, a) ; a \in A)=0$.
Conversely, if $\inf \{d(x, a) ; a \in A)=0$ then for some sequence $a_{n} \in A$ we have $d\left(a_{n}, x\right) \rightarrow 0$. Then $a_{n} \rightarrow x$, i.e. $x \in \bar{A}$.
4. The diameter of a metric space (X, d) is defined as $\sup \{d(x, y) ; x, y \in X\}$.

A set A in a metric space (X, d) is called bounded iff $\operatorname{diam}(A)<\infty$. Prove that:
(a) A is bounded if and only if there exist $x \in A$ and $r>0$ such that $A \subset B(x ; r)$, If $D=\operatorname{diam}(A)<\infty$ then $A \subset B(x ; D)$ for any $x \in A$. Conversely, if for some $x \in A$ and $r>0$ one has $A \subset B(x ; r)$ then $\operatorname{diam}(A) \leq \operatorname{diam}(B(x ; r))=2 r$.
(b) Any finite set A is bounded, This follows obviously from the definition.
(c) A Cauchy sequence in (X, d) is a bounded set.

Let $\left(x_{n}\right)$ be a Cauchy sequence in X. We may find N such that $d\left(x_{n}, x_{m}\right)<1$ for all $n, m>N$. Pick $n_{0}>N$. The ball $B\left(x_{n_{0}} ; 1\right)$ contains all points x_{n} except finitely many. Therefore the supremum

$$
R=\sup \left\{d\left(x_{n_{0}}, x_{n}\right) ; n=1,2,3, \ldots\right\}
$$

is finite, $R<\infty$. Thus $x_{n} \in B\left(x_{n_{0}} ; R\right)$ for all $n=1,2, \ldots$. The result now follows from part (a).
5. A Cauchy sequence $\left(x_{n}\right)$ in a metric space (X, d) contains a subsequence $\left(x_{n_{i}}\right)$ which converges to a point $z \in X$. Show that the whole sequence x_{n} converges to z as well.

Since $\left(x_{n}\right)$ is a Cauchy sequence, the sequence $\sup \left\{d\left(x_{n_{i}}, x_{n}\right) ; n \geq n_{i}\right\}=\epsilon_{i}$ tends to 0 , i.e. $\epsilon_{i} \rightarrow 0$ as $i \rightarrow \infty$. Thus, for $n \geq n_{i}$ we have

$$
d\left(x_{n}, z\right) \leq d\left(x_{n}, x_{n_{i}}\right)+d\left(x_{n_{i}}, z\right) \leq \epsilon_{i}+d\left(x_{n_{i}}, z\right)
$$

and when $i \rightarrow \infty$ one has $\epsilon_{i} \rightarrow 0$ and $d\left(x_{n_{i}}, z\right) \rightarrow 0$ implying our statement.

