
MTH793P Advanced Machine Learning, Semester B, 2023/24
Coursework 5

1 Evaluating clustering algorithms

In this problem we assume that we have a data set {x1, . . . , x6} ⊂ R2 that looks as follows:

The Euclidean distances along all the edges segments is equal to 1.
We will consider to alternative clusterings on these data:

• C = {C1, C2}, with C1 = {x1, x2, x3} and C2 = {x4, x5, x6}.

• C ′ = {C′
1, C′

2, C′
3}, with C′

1 = {x1, x2}, C′
2 = {x3, x4}, and C′

3 = {x5, x6}.

1. Compute the Dunn-Index (DI) for C and C ′, using the single-linkage inter-cluster
distance, and the diameter intra-cluster distance. Which clustering is better?

2. Compute the mean Silhouette Coefficient (SC) for C and C ′. Which one is better?

3. Suppose that we know that C ′ is the ground-truth for this dataset. Compute the
Rand Index (RI) for C.

Solution:

1. Using the single-linkage distance, we have:

δ(C1, C2) = δ(C′
1, C′

2) = δ(C′
2, C′

3) = 1, δ(C′
1, C′

3) = 1 +
√

3.

Using the diameter:

∆(C1) = ∆(C2) = ∆(C′
1) = ∆(C′

2) = ∆(C′
3) = 1.



Therefore,

DI(C) = 1
1
= 1, DI(C ′) =

min(1, 1 +
√

3)
1

= 1.

In other words, the Dunn index we computed does not favour any of the clusterings.

2. Start with C:

a(x1) = a(x2) = a(x3) = a(x4) = a(x5) = a(x6) = 1.

Next,

∥x1 − x4∥ =

√
(1/2)2 + (

√
3/2 + 1)2 = 1.9319,

∥x1 − x5∥ = 1 +
√

3 = 2.7321,

∥x1 − x6∥ =

√
1 + (1 +

√
3)2 = 2.9093.

Therefore,

b(x1) = b(x2) = b(x5) = b(x6) =
1
3
(1.9319 + 2.7321 + 2.9093) = 2.5244,

and
b(x3) = b(x4) =

1
3
(1 + 1.9319 + 1.9319) = 1.6213.

We conclude that

s(x1) = s(x2) = s(x5) = s(x6) =
2.5244 − 1

2.5244
= 0.6039,

and
s(x3) = s(x4) =

1.6213 − 1
1.6213

= 0.3832.

Overall, we have

SC(C) = 1
6
(4 × 0.6039 + 2 × 0.3832) = 0.5303.

Next, we do the same for C ′:

a(x1) = a(x2) = a(x3) = a(x4) = a(x5) = a(x6) = 1.

Next,

b(x1) = b(x2) = b(x5) = b(x6) =
1
2
(1 + 1.9319) = 1.4660,

and
b(x3) = b(x4) = 1.

Therefore,

s(x1) = s(x2) = s(x5) = s(x6) =
0.4660
1.4660

= 0.3179,



and
s(x3) = s(x4) = 0.

We conclude that
SC(C ′) =

1
6
(4 × 0.3179) = 0.2119.

For the silhouette coefficient, clearly the C is better than C ′.

3. Since C ′ is assumed to be the correct clustering, we have

• True Positives: (x1, x2), (x5, x6).

• True Negatives: (x1, x4), (x1, x5), (x1, x6), (x2, x4), (x2, x5), (x2, x6), (x3, x5), (x3, x6).

Therefore
RI =

TP + TN

(6
2)

=
10
15

= 0.666.

2 SVD

1. Find vectors u ∈ R2 and v ∈ R3 such that the following identity is satisfied for all
known values:

uv⊤ =

(
1 0 ?
−2 ? 4

)
.

What value do you obtain at the missing entry denoted by a question mark?

2. Compute the singular value decomposition of the matrix

X =

(
3 2 2
2 3 −2

)
by hand. Hint: Find the eigenvalues of XX⊤ by computing the characteristic poly-
nomial. Then compute vectors in the nullspace of X⊤X−λI, where λ are the roots of
the characteristic polynomial and zero, in order to compute the eigenvectors u1, u2
and v1, v2, v3 that form the matrices U and V.

3. Compute an approximation L̂ ∈ R2×3 with rank(L̂) = 1 of the matrix

X :=
(
−2 3 2
2 2 3

)
by hand that satisfies ∥L̂ − X∥Fro ≤ ∥L − X∥Fro, for all L ∈ R2×3 with rank(L) = 1.

Solution:

1. In order to satisfy the equality, the 2 × 3-matrix has to have rank one. Hence, if we
choose (

1 0 −2
−2 0 4

)
.

https://en.wikipedia.org/wiki/Characteristic_polynomial
https://en.wikipedia.org/wiki/Characteristic_polynomial


we ensure that the entries of the first row are the entries of the second row multiplied
by −2. This way both rows are linearly dependent, leading to a matrix of rank one.
Two possible vectors u and v that satisfy

uv⊤ =

(
1 0 −2
−2 0 4

)
are u =

(
1 −2

)⊤ and v =
(
1 0 −2

)⊤.

2. The main equations to compute SVD are

X⊤X = VΣ⊤ΣV⊤ (1)

XX⊤ = UΣΣ⊤U⊤ (2)

Since Σ is diagonal and V is orthogonal, Eq.(1)-(2) show that Σ and V (or U) can be
respectively computed from the eigenvalues and the eigenvectors of X⊤X (or XX⊤).

If you need to solve this by hand, a useful trick is to start with X⊤X if X has more
rows than columns, otherwise you should start with XX⊤. For this exercise it is
better to start with Eq.(2).

XX⊤ =

(
3 2 2
2 3 −2

)3 2
2 3
2 −2

 =

(
17 8
8 17

)

Its eigenvalues can be computed by solving det(XX⊤ − λI) = 0.

det(XX⊤−λI) = det
(

17 − λ 8
8 17 − λ

)
= (17−λ)2 − 64 = λ2 − 34λ+ 172 − 64 = 0

whose solutions are λ1 = 25 and λ2 = 9. Since σ2
i = λi and σi > 0 for all i, it results

σ1 = 5 , σ2 = 3.

Now let’s compute the eigenvectors of XX⊤. It is sufficient to compute the kernel
of XX⊤ − λi I

ū1 ∈ ker(XX⊤ − λ1 I) = ker
(

17 − 25 8
8 17 − 25

)
= ker

(
−8 8
8 −8

)
=

{(
1
1

)
t
}

ū2 ∈ ker(XX⊤ − λ2 I) = ker
(

17 − 9 8
8 17 − 9

)
= ker

(
8 8
8 8

)
=

{(
1
−1

)
t
}



where we can arbitrarily select t = 1. ū1 and ū2 need to be orthonormal vectors, we
have to divide both of them by their modulus:

u1 = ū1
1√
2

u2 = ū2
1√
2

u1 and u2 are now orthonormal vectors and they are the columns of U accordingly
to Eq.(2).

So far we have computed:

Σ =

(
5 0 0
0 3 0

)

U =

(
1/

√
2 1/

√
2

1/
√

2 −1/
√

2

)
To find V, we need to compute the eigenvectors of X⊤X:

X⊤X =

3 2
2 3
2 −2

(
3 2 2
2 3 −2

)
=

13 12 2
12 13 −2
2 −2 8


Its eigenvalues can be computed by solving det(X⊤X − λI) = 0

det(X⊤X − λI) = det

13 − λ 12 2
12 13 − λ −2
2 −2 8 − λ

 = 0

But we don’t have to go through that! Indeed, we already know that, for XX⊤,
λ1 = 25 and λ2 = 9. What about λ3? Since there are only 2 singular values, it must
be λ3 = 0.

As we did before, compute the kernel of X⊤X − λi I



v̄1 ∈ ker(X⊤X − λ1 I) = ker

13 − 25 12 2
12 13 − 25 −2
2 −2 8 − 25

 = ker

−12 12 2
12 −12 −2
2 −2 −17


=


1

1
0

 t


v̄2 ∈ ker(X⊤X − λ2 I) = ker

13 − 9 12 2
12 13 − 9 −2
2 −2 8 − 9

 = ker

 4 12 2
12 4 −2
2 −2 −1


=


 1
−1
4

 t


v̄3 ∈ ker(X⊤X − λ3 I) = ker

13 − 0 12 2
12 13 − 0 −2
2 −2 8 − 0

 = ker

13 12 2
12 13 −2
2 −2 8


=


 2
−2
−1

 t


where we can arbitrarily select t = 1. Again, note that v̄1, v̄2, and v̄3 needs to be
orthonormal vectors, so we have to divide each of them by their modulus:

v1 = v̄1
1√
2

v2 = v̄2
1√
18

v3 = v̄3
1√
9

v1, v2, and v3 are now orthonormal vectors and they are the columns of V accord-
ingly to Eq.(1). V can then be written as:

V =

1/
√

2 1/
√

18 2/3
1/

√
2 −1/

√
18 −2/3

0 4/
√

18 −1/3


3. From the lecture notes we know that the best possible rank-one approximation in

terms of the Frobenius norm can be computed by computing the (incomplete) sin-
gular value decomposition of X. Hence, we compute the eigenvalues of XX⊤ by



solving the characteristic polynomial det(XX⊤ − λI) = 0, i.e.

det(XX⊤ − λI) = det
((

17 − λ 8
8 17 − λ

))
= λ2 − 34λ + 225 ,

whose solutions are λ1 = 25 and λ2 = 9. Since the singular values are σi =
√

λi for
i = 1, 2, we obtain σ1 = 5 and σ2 = 3. The best rank one approximation can be com-
puted by computing X̃ = u1u⊤

1 X, where u1 is the singular vector that corresponds
to σ1. We determine u1 by computing the kernel of XX⊤ − λ1 I, i.e.

ker(XX⊤ − λ1 I) = ker
((

−8 8
8 −8

))
=

{
t
(

1
1

)∣∣∣∣ t ∈ R

}
.

Since u1 ∈ ker(XX⊤ − λ1 I) has to have norm one, we easily compute

u1 =
1√
2

(
1
1

)
.

As a consequence, the best rank-one approximation of X in terms of the Frobenius
norm is computed via

X̃ = u1u⊤
1 X =

1
2

(
1
1

) (
1 1

) (−2 3 2
2 2 3

)
=

1
2

(
0 5 5
0 5 5

)
.
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