Week 6
We have lectuns mert wek
Asselsed cowsework dendine
11 am next Moncay?

Last week
A ring is a set R with t (addition) X (multiplication)

$$
(R+0) \text { If } a, b \in R, \quad a+b \in R
$$

$(R+1)$ if $a, b, c \in R$.

$$
a+(b+c)=(a+b)+c
$$

$(R+2) \Rightarrow 0 \in R$ sit. $0+a=a+0=a$ $\forall a \in R$
$(R+3) \quad V_{a \in R}$, there exists $b \in R$ st. $a+b=b+a=0$
$(R+4)$ If $a, b \in R$.

$$
a+b=b+a
$$

$(R+0)-(R+4)$ tells you that
$(R . t)$ §an abelian graw.
(A fing, by definition, is an abelin
$(R \times 0)$ If $a, b \in R$, group)

$$
a \times b \in R
$$

$a b$
$(R \times 2)$ If $a \cdot b, c \in R$
ten $a \times(b \times c)=(a \times b) \times c$
$(R x+)$ If $a_{1} b_{1} c \in R$,

$$
a \times(b+c)=a \times b+a \times c
$$

$(R+x)$

$$
(b+c) \times a=b \times a+c \times a
$$

Remark (R, X) is noT a stow! because thane is no identity element w.r.t. X

Def If $\quad \forall a, b \in R$
\& $a b=b a$, ten R is called a commutative ting.

Exampless

- \{0\} with addition 0 to $=0$ multiplication $0 \times 0=0$
$-\left(\mathbb{Z}_{1}+, X\right)$ is a commatatio
$-\left(\mathbb{Z}_{n},+x\right)-11-$ His

$$
\left\{[0],[1], \cdots[n-1]_{n}\right\}
$$

- If $(G, *)$ is an ablim group, $\operatorname{ten}(G, *, X)$ is a riug this is my chüce of " ${ }^{\prime}$ "
whene $\forall a, b \in G_{1}$

$$
a \times b=e
$$

to Scentity dement

$$
\text { of } G
$$

$$
(R x+) a \times(b+c)=a \times b+a \times c
$$

(45) $a \times(b+c)=e$
(2145)

$$
\begin{aligned}
& a \times b=e \\
& a \times c=l \\
& a \times b+a \times c=c+e \\
& =e
\end{aligned}
$$

becare $(G, *)$ is a grap.

$$
\begin{aligned}
& -\mathbb{Z}[i]:=\{a+b i \mid a, b \\
& i=\sqrt{-1} \quad \mathbb{Z}\} \\
& \text { - } M_{2}(\mathbb{R}):=\left\{\left.\binom{a b}{c d} \right\rvert\, a_{1} b_{1} c, d\right. \\
& \in \mathbb{R}\}
\end{aligned}
$$

is a non-communtatier ting,
$-\mathbb{R}[X]=$ the set is plynomists in one variole X with comfits in \mathbb{R}.
Ill come back to this example
mone in detrils in heek 8

- If $\left(R_{1} t_{R}, x_{R}\right)$

$$
\left(S, t_{s,}, X_{s}\right)
$$

the Cartesian product of R\&S (i.e. the $\$ 2 t$ of arcened pairs of elements in R\&SI

$$
\begin{aligned}
R \times S=\{(r, s) \mid & r \in R \\
& s \in S\}
\end{aligned}
$$

is a Hing with ressect to

$$
(r, s)+\left(r^{\prime}, s^{\prime \prime}\right)=\left(r t_{R} r^{\prime}, s t_{s} s^{\prime}\right)
$$

$$
\begin{aligned}
& r_{1} r^{\prime} \in R \\
& \$ S^{\prime} \in S \\
& (r, s) \times\left(r^{\prime}, s^{\prime}\right)=\left(r_{x_{2}} r^{\prime}, s_{x} s^{\prime}\right) \\
& \mathbb{R}^{2}=\{(r, \$) \mid r, \$ \in \mathbb{R}\}
\end{aligned}
$$

- Tho set of all functions

$$
\mathbb{R} \rightarrow \mathbb{R}
$$

defies a ting

$$
\begin{aligned}
& f, s: \mathbb{R} \rightarrow \mathbb{R} \\
& \quad(f+g): \mathbb{R} \rightarrow \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& x \mapsto f(x)+g(x) \\
f g: & \mathbb{R} \rightarrow \mathbb{R} \\
& x \mapsto f(x) g(x)
\end{aligned}
$$

The "O", i.e. the icentity element w. r. t. acdition $(R+2)$
is

$$
\begin{aligned}
& \mathbb{R} \rightarrow \mathbb{R} \\
& u \\
& u \rightarrow 0
\end{aligned}
$$

I gave you a couple is
non-examples

Recall that $\left(R_{1}+\right)$ is an abliom group.
Prop 15 Let $\left(R_{1}, x, x\right)$ be a ting.

- The zero element, ie. te idmantiy demon writ, + in $(R+2)$,
is unique
- Any element in R has a unique inverse writ. t

If $a \in R, \exists!) b \in R$
tow exist" st. $a+b=b+a=0$

- If annie element
- If $a+b=a+c_{1}$
ten $b=c$.
Prop lb For every element a in R,

$$
a \times 0=0 \times a=0
$$

Hint: Use R+2!

$$
\text { ut } \dot{\exists} 0 \text { sit. } a+0=0+a
$$

$$
=a
$$

Letting $a=0$ itself, $\forall a \in R$
wo get $0+0=0$

Multiplyig both rates by $a \in R$

$$
\begin{gathered}
\frac{a(0+0)}{I(R x+1}=a \cdot 0 \\
a \cdot 0+a \cdot 0
\end{gathered}
$$

Last assortion of Prop 15 sinds

$$
a \cdot 0=0
$$

similer for $0 \cdot a=0$
(Eyercise)

Up until now, we'ke only lowed at "additive" structures. We'll now look at "multiplication" SHfratures

Def Let $\left(R_{1}+x\right)$ be a ring
If R his an element " 1 "

$$
\begin{aligned}
& \text { sit. } a \times 1=1 \times a=a \\
& \forall a \in R
\end{aligned}
$$

ton wo say that R is a ting
with identity element
\uparrow
By this "identity", we mean to multiplicative identity
(truther than to accitice íemritity

$$
\text { "o" in } R+2 \text {) }
$$

Ex(am)es

- $(\mathbb{Z},+, X)$ is a commentator tiv with identity "1"
$\cdot\left(Q Q_{1}+X\right)$
- $(\mathbb{R},+, X)$
- $\{0\}$ is a tigg with identity 0 becunce it is *cefinec * that

$$
0 \times 0=0 .
$$

- If R is a Fios with identity, tem the sct $M_{2}(R)$ of $2-$ by -2 amatios with enttles in R is a tiris

Therven 17
$\mathbb{Z}_{n}:=$ the det if equiviacne clcsstrs $[a]_{n}$

$$
w_{1} r_{1}+(\equiv \bmod n)
$$

is a (commontative) ting with identity

$$
[1]
$$

$$
\begin{aligned}
\stackrel{A}{=} & {[1][a] \stackrel{\text { ed }}{=d t}[1 \cdot a]=[a] } \\
& {[a][1]=[a \cdot 1]=[a] }
\end{aligned}
$$

Find tings what identity dement

- The set $2 \mathbb{Z}=\{2 z \mid z \in \mathbb{Z}\}$ of even integers is a ting without is entity.
(because 1 is NJ I an ever inhaler)
with addition \& multiplication
as defined parlor
is a Hing withcht identity
because the identity function

$$
\left.\begin{array}{rl}
\mathbb{R} & \rightarrow \mathbb{R} \\
\psi & \psi \\
& x
\end{array}\right) 1
$$

So this function does NOT
beaus to R
Lad Let (R, t, X) be
a Fins with Tensity 1 ,
An element a in R is called
a unit if $\exists b \in R$
sit. $a b=b a=1$.
In other wards,

$$
\{\text { units in } R\}=\left\{\begin{array}{l}
\text { elements in } R \\
\text { with montiplictio }
\end{array}\right\}
$$

Det Let R^{x} denite to set do units in (R.t.X) with identity
Exericie. Im wike for

- \mathbb{Z}^{x} un inager $a \cdot 2$

4. $3 b$ D $\cos =1$

- $M_{2}(\mathbb{R})^{X}$

枯如
asb are ixposis the dive 1

$$
\begin{aligned}
& \cdot \mathbb{Z}[i]^{x}=\{a+b i \quad\{ \pm 1\} . \\
& \left.i^{-2}=-1 \quad a, b \in \mathbb{Z}\right\} \\
& M_{2}(\mathbb{R})^{x}
\end{aligned}
$$

$M_{2}(\mathbb{R})$ a ting with identity

$$
1_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

The units are

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2}(\mathbb{R})
$$

st. $\exists B \in M_{2}(\mathbb{R})$
\&.1. $\quad A B=B A=1_{2}$
These matiles are called invertibe matrios, i.e.
A with $\operatorname{det} A \neq 0$

$$
\left(\begin{array}{c}
11 \\
a b \\
c d
\end{array}\right) \quad \text { " } a b-b
$$

In fant, if $A=\binom{a b}{c d}$ with $a d-b c$ ten $B=\frac{1}{a--b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right) \quad H_{0}$
works,
Need to check

$$
\begin{gathered}
A B=B A=1 \\
\binom{a b}{c d} \cdot \frac{1}{a c-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \\
=\frac{1}{a d-b c}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \\
=\frac{1}{a d-b c}\left(\begin{array}{cc}
a d-b c & -a b+a b \\
d c-d c & -b c+a d
\end{array}\right) \\
0
\end{gathered}
$$

$$
=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

- $\mathbb{Z}[i]^{x}$?

I'm lockiog for

$$
\begin{array}{ll}
a+b i & d ., \\
a, b \in \mathbb{Z} & c+d i \\
& c, d \in \mathbb{Z} \\
(a+b i)(c+d i)=1
\end{array}
$$

$$
|r+\xi i|=\sqrt{r^{2}+\xi^{2}}
$$

\backsim Takis the drosucte values on bith 3ito

$$
\begin{aligned}
& \quad\left(a^{2}+b^{2}\right)\left(c^{2}+c^{2}\right)=1 \\
& \text { i.e. } \quad a^{2}+b^{2}=1 \\
& \Rightarrow \quad(\text { a,b) it eitfor }(1,0),(0,1) \\
& \qquad(-1,0)(0,-1)
\end{aligned}
$$

\Rightarrow Tevefure

$$
\mathbb{Z}[i]^{x}=\left\{\begin{array}{l}
1,-1 \\
i_{1},-i
\end{array}\right\}
$$

Homewak untll Friday
Rend up to Thevem 21

$$
\begin{aligned}
& a * e=a \\
& a * a=a
\end{aligned}
$$

