WEEK 6

- Panalld transport and goodsics

In feat space, parallel transport of a vector V^{a} along a unve $x^{a}(\lambda)$ means to "Kep the valor constant along the curve".
\rightarrow tangent vector to curve $x^{a}(\lambda): X^{a}=\frac{d x^{a}}{d \lambda}$

$$
\Rightarrow \frac{d}{d \lambda} V^{a}=\frac{d x^{b}}{d \lambda} \partial_{b} V^{a}=x^{b} \partial_{b} v^{a}=0^{d \lambda}
$$

- Two issues with the above in cuwel spaces:
- The poncllel transport depends on the path taken

- The expression above for the parallel transport is not covariant \rightarrow it is NOT tensorial
- Def: In a general cured smooth manifold, a seton V^{a} is saich to be panallely transportal along another vector W^{a} if

$$
W^{b} \nabla_{b} V^{a}=0
$$

- This concept can be generalised to tensors of arbitral rank: a (K, l) tensen T is said to be panallely transported along a vector W^{a} if

$$
W^{b} \nabla_{b} T^{a_{1} \cdots a_{k}} b_{1} \ldots b_{e}=0
$$

- Geodesics

Straight lines in feat space are chonarterised by the fact that their tangent vector is panallely transported at evan point:

Def: Affine geodesics: curves along which the tangent vector is propagated panallely to itself:

$$
W^{b} \nabla_{b} W^{a}=0, W^{a}: \text { tangent veter }
$$

Explicitly: $W^{a}=\frac{d x^{a}}{d \lambda}$

$$
\begin{aligned}
W^{b} \nabla_{b} W^{a} & =W^{b} \partial_{b} W^{a}+\Gamma_{b c}^{a} W^{b} W^{c} \\
& =\frac{d}{d \lambda}\left(\frac{d x^{a}}{d \lambda}\right)+\Gamma_{b c}^{a} \frac{d x^{b}}{d \lambda} \frac{d x^{c}}{d \lambda} \\
& =\frac{d^{2} x^{a}}{d \lambda^{2}}+\Gamma^{a} b c \frac{d x^{b}}{d \lambda} \frac{d x^{c}}{d \lambda}=0
\end{aligned}
$$

where we have used that $\frac{d}{d \lambda}=\frac{d x^{a}}{d \lambda} \partial_{a}$
\rightarrow that's the famous geodesic equation

- From the existence and uniqueness of solutions to ODES, to any dinction at a point there exists a unique geodesic passing through that point. The initial conditions ane

$$
\lambda=0, x^{a}(0)=x_{0}^{a},\left.\frac{d x^{a}}{d \lambda}\right|_{\lambda=0}=w_{0}^{a}
$$

- Example: reparametrisation of a geoclosic: $\lambda \rightarrow \sigma(\lambda)$
\rightarrow The groclosic equation above only Keeps the same form iff $\sigma=a \lambda+b, a, b \in \mathbb{R}$
To see this, consider

$$
\begin{aligned}
& \frac{d x^{a}}{d \lambda}=\frac{d x^{a}}{d \sigma} \frac{d \sigma}{d \lambda} \\
& \frac{d^{2} x^{a}}{d \lambda^{2}}=\frac{d}{d \lambda}\left(\frac{d x^{a}}{d \sigma} \frac{d \sigma}{d \lambda}\right)=\frac{d^{2} x^{a}}{d \lambda^{2}}\left(\frac{d \sigma}{d \lambda}\right)^{2}+\frac{d x^{a}}{d \sigma} \frac{d^{2} \sigma}{d \lambda^{2}}
\end{aligned}
$$

Substituting in the geodesic eq. gives

$$
\left(\frac{d^{2} x^{a}}{d \sigma^{2}}+\Gamma^{a} b_{c} \frac{d x^{1}}{d \sigma} \frac{d x^{c}}{d \sigma}\right)\left(\frac{d \sigma}{d \lambda}\right)^{2}+\frac{d x^{a}}{d \sigma} \frac{d^{2} \sigma}{d \lambda^{2}}=0
$$

This has the same form as tepee iff

$$
\frac{d^{2} \sigma}{d \lambda^{2}}=0 \Rightarrow \sigma=a \lambda+b
$$

- A parameter λ for whids the geoclesic equation has the form

$$
\frac{d^{2} x^{a}}{d \lambda^{2}}+\Gamma^{a} b c \frac{d x^{b}}{d \lambda} \frac{d x^{c}}{d \lambda}=0
$$

is called affine paranncter and the geodesic is said to be affinely parametrised.

The mon-affincly paranctised geodesic equation is

$$
\begin{aligned}
& W^{b} \nabla_{b} W^{a}=f(\lambda) W^{a} \\
& \Leftrightarrow \frac{d^{2} x^{a}}{d \lambda^{2}}+\Gamma_{b c}^{a} \frac{d x^{b}}{d \lambda} \frac{d x^{c}}{d \lambda}=f(\lambda) \frac{d x^{a}}{d \lambda}
\end{aligned}
$$

$f(\lambda)$: arbitrary function on the amer

Note it is always pumible to upmamednise a geodesic so that it is affinely pananictised.

- Metric geodesics
\rightarrow We will show that on a manifold M with a metric, geoclosis exetremise the chistance between two points.
consider the functional (i.e., function of functions)

$$
\mathcal{L}=\int_{x_{1}}^{x_{2}} d \lambda(x, \dot{x}, \lambda) \quad \text { when } x=x(\lambda), \dot{x}=\frac{d x}{d \lambda}
$$

We want to consider variations of the unve $x=x(\lambda)$ Keeping endpoints fixed:

$$
\begin{aligned}
\delta \mathcal{L} & =\int_{x_{1}}^{x_{2}} d \lambda \delta L(x, \dot{x}, \lambda)=\int_{x_{1}}^{x_{2}} d \lambda\left(\frac{\partial L}{\partial x} \delta x+\frac{\partial L}{\partial \dot{x}} \delta \dot{x}\right) \stackrel{\downarrow}{=} \\
& \left.=\int_{x_{1}}^{x_{2}} d \lambda\left(\frac{\partial L}{\partial x} \delta x+\frac{\partial L}{\partial \dot{x}} \frac{d}{d \lambda} \delta x\right)=\mid \text { integrate by parts }\right)= \\
& =\int_{x_{1}}^{x_{2}} d \lambda\left(\frac{\partial L}{\partial x} \delta x+\frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{x}} \delta x\right)-\frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{x}}\right) \delta x\right)
\end{aligned}
$$

$$
=\int_{x_{1}}^{x_{2}} d \lambda\left[\frac{\partial L}{\partial x}-\frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{x}}\right)\right] \delta x+\left.\frac{\partial L}{\partial \dot{x}} \delta x\right|_{x_{1}} ^{x_{2}}
$$

0 became $\delta x=0$ at the endpoints
$\Rightarrow \mathcal{Z}$ is stationary, i.e., $\delta \mathcal{Z}=0$, for arbitrany variations δx of the anne $x(\lambda)$ if

$$
\frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{x}}\right)-\frac{\partial L}{\partial x}=0
$$

Cuelu-Lagrange eqs for L

Length of a anve: $\mathcal{L}=\int_{x_{1}}^{x_{2}} d s=\int_{x_{1}}^{x_{2}} d \lambda \frac{d s}{d \lambda}$
but $d s^{2}=g_{a b} d x^{a} d x^{b} \Rightarrow \quad d s=\sqrt{g_{a b} d x^{a} d x^{b}}$
for a cure: $x^{a}=x^{a}(x)$

$$
\begin{aligned}
& \Rightarrow \frac{d s}{d \lambda}=\sqrt{g_{a b} \frac{d x^{a}}{d \lambda} \frac{d x^{b}}{d \lambda}}=\sqrt{g_{a b}(x) \dot{x}^{a} \dot{x}^{b}} \\
& \Rightarrow \mathcal{Z}=\int_{\lambda_{1}}^{\lambda_{2}} d \lambda \sqrt{g_{a b}(x(\lambda)) \dot{x}^{a} \dot{x}^{b}}
\end{aligned}
$$

Same type of functional as before with

$$
L=\sqrt{g_{a b}(x(x)) \dot{x}^{a} \dot{x}^{b}}
$$

\rightarrow Want to find the extrema of \mathcal{Z}
\rightarrow The costrema of z are the same as the extrema of \mathcal{Z}^{2}

$$
\begin{aligned}
& z^{2}=\int_{\lambda_{1}}^{\lambda_{2}} d \lambda g_{a b}(x(\lambda)) \dot{x}^{a} \dot{x}^{b} \\
& \rightarrow L=g_{a b}(x(\lambda)) \dot{x}^{a} \dot{x}^{b} \\
& E-L: \frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{x}^{a}}\right)-\frac{\partial L}{\partial x^{a}}=0 \\
& \frac{\partial L}{\partial \dot{x}^{a}}=2 g_{a b} \dot{x}^{b} \\
& \frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{x}^{a}}\right)=2 g_{a b} \ddot{x}^{b}+2\left(\partial_{c} g_{a b}\right) \dot{x}^{\dot{x}^{b}} \\
& \frac{\partial L}{\partial x^{a}}=\left(\partial_{a} g_{b c}\right) \dot{x}^{b} \dot{x}^{c} \\
& E-L: 2 g_{a b} \ddot{x}^{b}+2\left(\partial_{c} g_{a b}\right) \dot{x}^{c} \dot{x}^{b}-\left(\partial_{a} g_{b c}\right) \dot{x}^{b} \dot{x}^{c}=0 \\
& \frac{1}{2} g^{a d}\left(2 g_{a b} \ddot{x}^{b}+2\left(\partial_{c} g_{a b}\right) \dot{x}^{\dot{x}^{b}}-\left(\partial_{a} g_{b c}\right) \dot{x}^{b} \dot{x}^{c}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \ddot{x}^{d}+\underbrace{\frac{1}{2} g^{a d}\left(\partial_{c} g_{a b}+\partial_{b} g_{a c}-\partial_{a} g_{b c}\right) \dot{x}^{b} \dot{x}^{c}=0}_{\Gamma_{b c}^{d}} \\
& \Rightarrow \ddot{x}^{d}+\Gamma_{b c}^{d} \dot{x}^{b} \dot{x}^{c}=0
\end{aligned}
$$

Reek: in flat space and in Cartesian coordinates $\Gamma_{b c}=0$ so the geoclesic equation becomes

$$
\ddot{x}^{a}=0 \rightarrow x^{a}=a \lambda+b: \text { straight line }
$$

Rank: For gab Riemammian, geodesic minimise the length while for gab Zonentzian gooderiss maximise the length.

- Example: geoleris on the unit S^{2}

$$
\begin{aligned}
& d s^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2} \\
& L=\left(\frac{d s}{d \lambda}\right)^{2}=g_{a b} \dot{x}^{a} \dot{x}^{b}=\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2} \\
& E-L: \quad \frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{x}^{a}}\right)-\frac{\partial L}{\partial x^{a}}=0 \quad \text { with } \quad x^{a}=(\theta, \phi) \\
& \underline{a=\theta}: \frac{\partial L}{\partial \theta}=2 \sin \theta \cos \theta \dot{\phi}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial L}{\partial \dot{\theta}}=2 \dot{\theta}, \frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=2 \ddot{\theta} \\
\Rightarrow \quad & 2 \ddot{\theta}-2 \sin \theta \cos \theta \dot{\phi}^{2}=0
\end{aligned}
$$

Divide by 2: $\quad \ddot{\theta}-\sin \theta \cos \theta \dot{\phi}^{2}=0$
\rightarrow That's the $a=\theta$ component of the geodesic eq:

$$
\begin{aligned}
& \ddot{x}^{\theta}+\Gamma_{b c}^{\theta} \dot{x}^{b} \dot{x}^{c}=0 \\
\Rightarrow & \Gamma_{\phi \phi}^{\theta}=-\sin \theta \cos \theta, \Gamma_{\theta \theta}^{\theta}=\Gamma_{\theta \phi}^{\theta}=\Gamma_{\phi \theta}^{\theta}=0 \\
a=\phi: \quad & \frac{\partial L}{\partial \phi}=0 \\
& \frac{\partial L}{\partial \dot{\phi}}=2 \sin ^{2} \theta \dot{\phi}, \frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{\phi}}\right)=2\left[\sin ^{2} \theta \ddot{\phi}+2 \sin \theta \cos \theta \dot{\theta} \dot{\phi}\right] \\
E-L: & \frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{\phi}}\right)-\frac{\partial L}{\partial \phi}=2 \sin ^{2} \theta[\ddot{\phi}+2 \cot \theta \dot{\theta} \dot{\phi}]=0 \\
\Rightarrow & \ddot{\phi}+2 \cot \theta \dot{\theta} \dot{\phi}=0 \Leftrightarrow \ddot{x}^{\phi}+\Gamma_{b c}^{\phi} \dot{x}^{b} \ddot{x}^{c}=0 \\
\Rightarrow & \Gamma_{\theta \phi}^{\phi}=\Gamma_{\phi \theta}^{\phi}=\cot \theta, \Gamma_{\theta \theta}^{\phi}=\Gamma_{d \phi}^{\phi}=0
\end{aligned}
$$

Note that because $\frac{\partial L}{\partial \phi}=0$ the $a=\phi$ component of the E-L equation (and hance the geodesic equation) reduces to

$$
\frac{d}{d \lambda}\left(\frac{\partial L}{\partial \dot{\phi}}\right)=\frac{d}{d \lambda}\left(2 \sin ^{2} \theta \dot{\phi}\right)=0 \Rightarrow \sin ^{2} \theta \dot{\phi}=\text { const }
$$

a solution to this equation is $\dot{\phi}=0 \Rightarrow \phi=$ const Than the $a=\theta$ component of the geodesic equation reduces to $\ddot{\theta}=0 \Rightarrow \theta=\lambda$ by choosing the integration constants appropriately.
\rightarrow That's a meridian.

- Curvature
- The change of a vector efta parallel transport around a closed loop is measured ty the cunvatiue

$$
\delta V^{c}=R_{d a b}^{c} V^{d} A^{a} B^{b}
$$

R^{\prime} dab: Riemann tensor
$R^{c} d_{a b}=-R^{c} d b_{a}$ since interchanging the valois
A^{a} and B^{a} conesponds to travasing the loop in the opposite direction.
This effinition is equivaluat to considuing the clifferme between parallel transport a given tasso in one direction and them the other, versus the opposite onduing:

This is measured by the commutation of two covariant derivatives. Consider am abbitrany sector field V^{a} :

$$
\left[\nabla_{a}, \nabla_{b}\right] V^{c}=R^{c} d_{a b} V^{c}
$$

We can expand the ∇_{a} on the Lis to find a formulas for the Riemann tensor:

$$
\begin{aligned}
{[} & \left.\nabla_{a}, \nabla_{b}\right] V^{c}=\nabla_{a} \nabla_{b} V^{c}-\nabla_{b} \nabla_{a} V^{c} \\
= & \partial_{a}(\underbrace{\nabla_{b} V^{c}}_{\partial_{b} V^{c}})-\Gamma_{a b}^{c}{ }_{b d}^{d} V^{d} V^{c}+\Gamma_{a d}^{c} \nabla_{b} V^{c}-(a \leftrightarrow b) \\
= & \partial_{a} \partial_{b} V^{c}+\left(\partial_{a} \Gamma_{b d}^{c}\right) V^{d}+\Gamma_{b d}^{c} \partial_{a} V^{d} \\
& -\Gamma_{a b}^{d} \partial_{d} V^{c}-\Gamma_{a b}^{d} \Gamma_{d e}^{c} V^{e} \\
& +\Gamma_{a d}^{c} \partial_{b} V^{c}+\Gamma_{a d}^{c} \Gamma_{b e}^{d} V^{e} \\
& -(a \leftrightarrow b) \\
= & \left(\partial_{a} \Gamma_{b d}^{c}-\partial_{b} \Gamma_{a d}^{c}+\Gamma_{a c}^{c} \Gamma_{b d}^{c}-\Gamma_{b c}^{c} \Gamma_{a d}^{c}\right) V^{d}
\end{aligned}
$$

Since V^{a} is arbitrany, we find

$$
R_{d a b}^{c}=\partial_{a} \Gamma_{b d}^{c}-\partial_{b} \Gamma_{a d}^{c}+\Gamma_{a c}^{c} \Gamma_{b d}^{c}-\Gamma_{b c}^{c} \Gamma_{a d}^{c}
$$

Note that for a scalar $\left[\nabla_{a}, \nabla_{b}\right] \phi=0$

$$
\begin{aligned}
& \Rightarrow 0= {\left[\nabla_{a}, \nabla_{b}\right]\left(W_{c} V^{c}\right)=} \\
&= \nabla_{a} \nabla_{b}\left(W_{c} V^{c}\right)-(a \leftrightarrow b) \\
&= \nabla_{a}\left(V^{c} \nabla_{b} W_{c}+W_{c} \nabla_{b} V^{c}\right)-(a \leftrightarrow b) \\
&= V^{c} \nabla_{a} \nabla_{b} W_{c}+W_{c} \nabla_{a} \nabla_{b} V^{c} \\
&+\left(\nabla_{a} V^{c}\right) \nabla_{b} W_{c}+\left(\nabla_{a} W_{c}\right) \nabla_{b} V^{c}-\left(a \leftrightarrow W^{c}\right) \\
&= V^{c}\left[\nabla_{a}, \nabla_{b}\right] W_{c}+W_{c}\left[\nabla_{a}, \nabla_{b}\right] V^{c} \\
&= V^{c}\left[\nabla_{a}, \nabla_{b}\right] W_{c}+R^{c} d_{a b} V^{d} W_{c} \\
& \Rightarrow \quad\left[\nabla_{a}, \nabla_{b}\right] W_{c}=-R_{c a b}^{d} W_{d}
\end{aligned}
$$

Proceeding by includion we can compute

$$
\begin{aligned}
{\left[\nabla_{c}, \nabla_{d}\right] X^{a_{1} \ldots a_{k} b_{1} \ldots b_{c}=} } & R^{a_{1}} e_{c d} X^{e a_{2} \ldots a_{k}} b_{1 \ldots b}+\ldots \\
& +R^{a_{k}} e c d X^{a_{1} \ldots a_{k-1 e}} b_{1} \ldots b_{c} \\
& -R^{e} b_{1 c d} X^{a_{1} \ldots a_{k}} e b_{2} \ldots b_{e} \\
& -R^{e} b_{l c d} X^{a_{1} \ldots a_{k}} b_{1} \ldots b_{k-1}
\end{aligned}
$$

- Geodesic deviation
- In flat Euclidean space two straight limes that one initially parallel remain parallel (one of Euclid's axioms)

- That's NOT true in curved spaces. Curvature (i.e., Riemann tensor) measures the failure of two geodesics that are initially parallel to remain parallel

Consider a one pasanacta family of geodesics $\gamma_{s}(t)$ so that for each $s \in \mathbb{R}, \gamma_{s}$ is a geoclosic wi th affine parameter t. The parameters (s, t) can be chaser as wondinates on this surface:

Define the "relative velocity" of the geodesics:

$$
V^{a}=\left(\nabla_{T} S\right)^{a}=T^{b} \nabla_{b} S^{a}
$$

Relative acceleration of the geodesics:

$$
A^{a}=\left(\nabla_{T} V\right)^{a}=T^{b} \nabla_{b} V^{a}
$$

Since S and T ane basis vectors adapted to a coordinate systean, their commutation vanishes:

$$
\begin{gathered}
{[S, T]=0 \Rightarrow S^{b} \nabla_{b} T^{a}=T^{b} \nabla_{b} S^{a}} \\
\left(0=[S, T]^{a}=S^{b} \partial_{b} T^{a}-T^{b} \partial_{b} S^{a} \omega / T^{a}=\partial_{t}^{a}, S^{a}=\partial_{s}^{a}\right)
\end{gathered}
$$

We compunte:

$$
\begin{aligned}
& A^{a}= T^{b} \nabla_{b} V^{a}=T^{b} \nabla_{b}\left(T^{c} \nabla_{c} S^{a}\right) \\
&= T^{b} \nabla_{b}\left(S^{c} \nabla_{c} T^{a}\right) \\
&=\left(T^{b} \nabla_{b} S^{c}\right) \nabla_{c} T^{a}+T^{b} S^{c} \nabla_{b} \nabla_{c} T^{a} \\
&=\left(T^{b} \nabla_{b} S^{c}\right) \nabla_{c} T^{a}+T^{b} S^{c}\left(\nabla_{c} \nabla_{b} T^{a}+R^{a} d b c T^{d}\right) \\
&=\left(T^{b} \nabla_{b} S^{c}\right) \nabla_{c} T^{a}+S^{c} \nabla_{c}(\underbrace{\left(T^{a}\right. \text { is the tangent vecdor }}_{T^{b} \nabla_{b}^{a} T^{a}}-\underbrace{\left(S^{c} \nabla_{c} T^{b}\right) \nabla_{b} T^{a}} \\
&+R^{a} d b c T^{d} T^{b} S^{c} \quad \text { gean affinely paramectived } \\
& \text { geod. }
\end{aligned}
$$

\rightarrow Physically the accelenation of neighbowing geoduris is interpitecl as a mamifastation of the gravitational ticlal fonues.

- Symmetries of the Riemann tensor Consider

$$
\begin{aligned}
R_{a b c d} & =g_{a c} R_{b c d}^{e}= \\
& =g_{a c}\left(\partial_{c} \Gamma_{b d}^{e}-\partial_{d} \Gamma_{b c}^{e}\right)+\Gamma_{a e c} \Gamma_{b d}^{e}-\Gamma_{a e d} \Gamma_{b c}^{e}
\end{aligned}
$$

where $\Gamma_{a b d}=g_{a g} \Gamma_{b d}=\frac{1}{2}\left(\partial_{b} g_{d a}+\partial_{d} g_{b a}-\partial_{a} g_{b d}\right)$
Since $R_{\text {abed }}$ is a tension, it has the same symmetries in all coordinate panes. Consider a locally incutial frame, ie., $g_{\hat{a} \hat{b}}=\operatorname{ching}(-1,1 \ldots 1)$ and $\left.\partial_{\hat{\imath}} g_{\hat{a}} \hat{b}\right|_{p}=0 \Rightarrow \Gamma^{\hat{a}} \hat{b}_{\hat{\imath}}=0$,

$$
\begin{aligned}
\Rightarrow R_{\hat{a} \hat{b} \hat{\imath}} & =g_{\hat{a}} \hat{\jmath}\left(\partial_{\hat{c}} \Gamma \hat{j}_{\hat{b} \hat{\jmath}}-\partial_{\hat{d}} \Gamma \hat{j}_{b \hat{c}}\right) \\
& =\frac{1}{2}\left(\partial_{\hat{b}} \partial_{\hat{\imath}} g_{\hat{a} \hat{d}}+\partial_{\hat{a}} \partial_{\hat{a}} g_{\hat{b} \hat{\imath}}-\partial_{\hat{a}} \partial_{i} g_{\hat{b} \hat{\jmath}}-\partial_{\hat{b}} \partial_{\hat{d}} g_{\hat{a} \hat{c}}\right)
\end{aligned}
$$

We can now easily read off the symmetries:

$$
\begin{aligned}
& R_{a b c d}=-R_{b a c d}, R_{a b c d}=-R_{a b d c}, R_{a b c d}=R_{c d a b} \\
& R_{a b c d}+R_{a d b c}+R_{a c d b}=R_{a[d b c]}=0
\end{aligned}
$$

(1st Bianchi identity)
\Rightarrow In Ad, Rabid has 20 independent compronentós

- Biandri identity

Recall that in a locally inertial farce,

$$
\begin{aligned}
& R_{\hat{\imath} \hat{d} \hat{a} \hat{b}}=\frac{1}{2}\left(\partial_{\hat{a}} \partial_{\hat{\lambda}} g_{\hat{i} \hat{b}}-\partial_{\hat{i} \hat{l}_{\hat{i}}} g_{\hat{b} \hat{\imath}}-\partial_{\hat{b}} \partial_{\hat{\alpha}} g_{\hat{i} \hat{a}}+\partial_{\hat{b}} \partial_{\imath} g_{\hat{a} \hat{d}}\right) \\
& \rightarrow \partial_{\hat{i}} R_{\hat{\imath} \hat{d} \hat{\imath} \hat{b}}=\frac{1}{2} \partial_{\hat{\imath}}\left(\partial_{\hat{\imath}} \partial_{\hat{\lambda}} g_{\hat{\imath} \hat{b}}-\partial_{\hat{a}} \partial_{\hat{\imath}} g_{\hat{\lambda} \hat{l}}-\partial_{\hat{b}} \partial_{\hat{\alpha}} g_{\hat{a} \hat{a}}+\partial_{\hat{b}} \partial_{i} g_{\hat{a} \hat{d}}\right)
\end{aligned}
$$

Now consider the sum of the cychi permutations of the first three inches:

$$
\begin{aligned}
& \partial_{\hat{e}} R_{\hat{\imath} \hat{\lambda} \hat{a} \hat{b}}+\partial_{\hat{c}} R_{\hat{d} \hat{c} \hat{a} \hat{b}}+\partial_{\hat{d}} R_{\hat{\imath} \hat{\imath} \hat{a} \hat{b}}= \\
& =\frac{1}{2}\left(\partial_{\hat{e}} \partial_{\hat{a}} \partial_{\hat{d}} g_{\hat{i}} \hat{b}-\partial_{\hat{e}} \partial_{\hat{a}} \partial_{\hat{\imath}} g_{\hat{d}} \hat{d}-\partial_{\hat{\imath}} \partial_{\hat{b}} \partial_{\hat{d}} g_{\hat{i} \hat{a}}+\partial_{\hat{e}} \partial_{\hat{i}} \partial_{i} g_{\hat{a} \hat{d}}\right. \\
& +\partial_{\hat{\imath}} \partial_{\hat{\imath}} \partial_{\hat{\imath}} g_{\hat{d} \hat{b}}-\partial_{\hat{i}} \partial_{\hat{c}} \partial_{\hat{\alpha}} g_{\hat{\imath}}-\partial_{\hat{\imath}} \partial_{\hat{b}} \partial_{\hat{\imath}} g_{\lambda \hat{\imath}}+\partial_{\hat{\imath}} \partial_{\hat{b}} \partial_{\hat{\alpha}} g_{\hat{i} \hat{e}} \\
& \left.+\partial_{\hat{d}} \partial_{\hat{2}} \partial_{\hat{\imath}} g_{\hat{i} \hat{b}}-\partial_{\hat{d}} \partial_{\hat{a}} \partial_{\hat{\imath}} g_{\hat{b}}^{\hat{c}}-\partial_{\hat{d}} \partial_{\hat{b}} \partial_{\hat{\imath}} g_{\hat{i} \hat{a}}+\partial_{\hat{d}} \partial_{\hat{b}} \partial_{\hat{e}} g_{\hat{a} \hat{\imath}}\right) \\
& =0
\end{aligned}
$$

This is a tensor equation and hence it should be true in my coonchinate system:

$$
\nabla_{e} R_{c d a b}+\nabla_{d} R_{e c a b}+\nabla_{c} R_{d e a b}=\nabla_{[e} R_{c d] a b}=0
$$

\rightarrow and Biancis identity

The Ricci tensor

$$
R_{a b}=g^{c d} R_{c a d b}=\partial_{c} \Gamma_{a b}^{c}-\partial_{a} \Gamma_{c b}^{c}+\Gamma_{a b}^{d} \Gamma_{c d}^{c}-\Gamma_{c a}^{d} \Gamma_{d b}^{c}
$$

$R_{m k}: R_{a b}=R_{b a}$
Note that $\Gamma_{a b}^{a}=\partial_{b} \ln \sqrt{|g|}$ whee $g=\operatorname{det} g_{a b}$. Then

$$
R_{a b}=\partial_{c} \Gamma_{a b}^{c}-\partial_{a} \partial_{b} \ln \sqrt{|g|}+\Gamma_{a b}^{d} \partial_{d} \ln \sqrt{|g|}-\Gamma_{c a}^{d} \Gamma_{d b}^{c}
$$

The Rici Scalar: $R=g^{a b} R_{a b}=g^{a c} g^{b d} R_{a b c d}$
The Einstein tensor: $G_{a b}=R_{a b}-\frac{1}{2} R g_{a b}$

$$
\nabla^{a} G_{a b}=0
$$

Proof: Contract twice the 2nd Bianchi identity

$$
\begin{aligned}
0 & =g^{b l} g^{a e}\left(\nabla_{c} R_{c d_{a b}}+\nabla_{c} R_{d e a b}+\nabla_{d} R_{e c a b}\right) \\
& =\nabla^{a} R_{c a}+\nabla_{c} R+\nabla^{b} R_{c b} \\
& =2\left(\nabla^{a} R_{a c}+\frac{1}{2} \nabla_{c} R\right)=2 \nabla^{a} G_{a c}
\end{aligned}
$$

\rightarrow The fact that $G_{a b}$ is chivagance flue is a geometric pouty!

- The Way tensor

The Recci tenser and the Rice scalar contain all the information about the contractions of the Riemann tasses. The Weal tensor is the trace-fee part of the Riemann:

$$
\begin{aligned}
& \begin{aligned}
C_{a b c d}= & R_{a b c d} \\
& -\frac{2}{n-2}\left(g_{a[c} R_{d] b}-g_{l[c} R_{d] a}\right) \\
& +\frac{2}{(n-2)(n-1)} R g_{a[c} g_{d] b}
\end{aligned} \\
& C_{\text {ac }}=0
\end{aligned}
$$

- The Weyl tensor has the same symmetries as the Riemann:

$$
C_{a b c d}=C_{[a b][c d]}, C_{a b c d}=C_{c d a b}, C_{a[b c d]}=0
$$

- The Wage termor is invariant under conformal transformations of the metre: $g_{a b} \rightarrow \Omega(x)^{2} g_{a b}$

