QUEEN MARY UNIVERSITY OF LONDON

MTH5120

Solution to Exercise Sheet 5

1. A chemist studied the concentration of a solution (Y) over time (x). Fifteen identical solutions were prepared. The solutions were randomly divided into five sets of three, and the five sets were measured, respectively after $1,3,5,7$, and 9 hours.
Without making any plots the chemist entered the data into R , fitted a simple linear regression model and then carried out a goodness of fit test. The following is the Analysis of Variance table she produced but with some figures missing.
```
Analysis of Variance Table
```

Response: y

```
            Df Sum Sq Mean Sq F value
                        1 12.5971
x
Residuals 13
    Lack of fit 2.770
    Pure error
Total 14 15.5218
```

(a) In order to complete the Analysis of Variance Table, we need to compute different elements. First of all, we need to compute the $S S_{E}$, which is the difference between $S S_{T}$ and $S S_{R}$. Thus

$$
S S_{E}=S S_{T}-S S_{R}=15.5218-12.5971=2.9247
$$

Then we can compute the $M S_{R}$ and $M S_{E}$, which are

$$
M S_{R}=\frac{S S_{R}}{1}=12.5971 \quad M S_{E}=\frac{S S_{E}}{n-2}=\frac{2.9274}{13}=0.2251846
$$

Then F-value is equal to the ratio between $M S_{R}$ and $M S_{E}$ previously computed

$$
F=\frac{M S_{R}}{M S_{E}}=\frac{12.5971}{0.2251846}=55.94121
$$

Moving to the lack of fit and pure error part, we firstly compute the $S S_{P E}$ since we know all the other elements:

$$
S S_{P E}=S S_{E}-S S_{L o F}=2.9247-2.770=0.1547
$$

In our case, $m=5$ is the number of measured and then $d . f$. of the lack of fit is $m-2=5-2=3$, while the $d . f$. of the pure error is $n-m=15-5=10$. Moving to the Mean square, we have:

$$
M S_{L o F}=\frac{S S_{L o F}}{m-2}=\frac{2.770}{3}=0.9233333 \quad M S_{P E}=\frac{S S_{P E}}{n-m}=\frac{0.1547}{10}=0.01547
$$

Finally, the F of residuals is

$$
F=\frac{M S_{L o F}}{M S_{P E}}=\frac{0.923333}{0.01547}=59.68539
$$

Thus we have completed the table.
(b) Firstly we have $H_{0}: \beta_{1}=0$ versus $H_{1}: \beta_{1} \neq 0$ and F follows a F_{13}^{1} if H_{0} is true. The observed F is equal to 55.94 , while the p -value is given by

$$
1-p f(55.94,1,13)=4.635011 e-06
$$

So overwhelming evidence against H_{0}.
The second possible F test is H_{0} model fits well versus it does not fit well. In this case, F is distributed as F_{10}^{3} if H_{0} is true. The observed value of F is equal to 59.68. We compute the p -value given by

$$
1-p f(59.68,3,10)=1.096306 e-06
$$

So overwhelming evidence against H_{0}.
2. Write the following models in the form of a general linear model

$$
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}
$$

Hence find the least squares estimators of the parameters.
(a) The model with just a constant $(\mathrm{p}=1)$

$$
y_{i}=\beta_{0}+\varepsilon_{i} \quad i=1,2, \ldots, n .
$$

can be written as a GLM with

$$
\boldsymbol{X}=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right) \quad \boldsymbol{\beta}=\beta_{0}
$$

Thus we have

$$
\boldsymbol{X}^{t} \boldsymbol{y}=\left(\begin{array}{llll}
1 & 1 & \ldots & 1
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=\sum_{i=1}^{n} y_{i}
$$

On the other hand, $\boldsymbol{X}^{t} \boldsymbol{X}=n$. Hence, the inverse of $\left(\boldsymbol{X}^{t} \boldsymbol{X}\right)^{-1}=n^{-1}$. Then we have that the least square estimate of β_{0} is

$$
\widehat{\beta}_{0}=\frac{\sum y_{i}}{n}=\bar{y}
$$

The variance of $\widehat{\beta}_{0}$ is $\sigma^{2}\left(\boldsymbol{X}^{t} \boldsymbol{X}\right)^{-1}$ so σ^{2} / n.
(b) The linear regression model through the origin $(\mathrm{p}=1)$:

$$
y_{i}=\beta_{1} x_{i}+\varepsilon_{i} \quad i=1,2, \ldots, n .
$$

can be written as a GLM model with

$$
\boldsymbol{X}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \quad \boldsymbol{\beta}=\beta_{1}
$$

Thus we have

$$
\boldsymbol{X}^{t} \boldsymbol{y}=\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=\sum_{i=1}^{n} x_{i} y_{i}
$$

On the other hand, $\boldsymbol{X}^{t} \boldsymbol{X}=\sum_{i=1}^{n} x_{i}^{2}$. Hence, the inverse of $\left(\boldsymbol{X}^{t} \boldsymbol{X}\right)^{-1}=\left(\sum_{i} x_{i}^{2}\right)^{-1}$. Then we have that the least square estimate of β_{1} is

$$
\widehat{\beta}_{1}=\frac{\sum x_{i} y_{i}}{\sum_{i} x_{i}^{2}}
$$

The variance of $\widehat{\beta}_{1}$ is $\sigma^{2}\left(\boldsymbol{X}^{t} \boldsymbol{X}\right)^{-1}$ so $\sigma^{2} /\left(\sum_{i} x_{i}^{2}\right)$.
3. We have

$$
\operatorname{Var}\left(\widehat{\beta}_{0}\right)=\sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}\right) \quad \operatorname{cov}\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}\right)=\frac{-\sigma^{2} \bar{x}}{S_{x x}} \quad \operatorname{Var}\left(\widehat{\beta}_{1}\right)=\frac{\sigma^{2}}{S_{x x}}
$$

Hence

$$
\begin{aligned}
\operatorname{Var}\left(\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0}\right)\right. & =\operatorname{Var}\left(\left(\widehat{\beta}_{0}\right)+x_{0}^{2} \operatorname{Var}\left(\left(\widehat{\beta}_{1}\right)+2 x_{0} \operatorname{cov}\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}\right)\right.\right. \\
& =\sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}+\frac{x_{0}^{2}}{S_{x x}}-2 x_{0} \frac{\bar{x}}{S_{x x}}\right)= \\
& =\sigma^{2}\left(\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right)
\end{aligned}
$$

