
MTH 4104 Example Sheet II Solutions Shu SASAKI

II-1. xRy if and only no integer r satisfies x < rπ < y or y < rπ < x. We show the transitivity
by its contrapositive– if x��Rz then either x��Ry or y��Rz. Suppose x��Rz holds, i.e. there exists an
integer r such that x < rπ < z or z < rπ < z holds. Suppose x < rπ < z holds. Comparing y
with rπ, we see that they cannot possibly be equal, hence either rπ < y or y < rπ holds. If the
former holds, then x < rπ < y, hence x��Ry. If the latter holds, then y < rπ < z, hence y��Rz.

The equivalence class [24]R is {22, 23, 24, 25}.

II-2. The set of all squares in the plane R2 with horizontal and vertical sides and centre (0, 0).

II-3. Parts (elements of a partition) are defined to be non-empty. It is therefore necessary to
assume T is non-empty, as well as it is a proper subset of S. To prove that {T ,S − T} is a parti-
tion, we note (1) by the added assumption, neither T nor S − T is empty (2) T ∩ (S − T) = ∅
holds by definition (3) T ∪ (S − T) = S. By definition, T and S − T are both subsets of S,
hence T ∪ (S − T) ⊆ S holds. On the other hand, if x is an element of S, then exactly one of the
following two cases holds: either x lies in T (in which case x lies in T ) or x does not lie in T (in
which case x lies in S − T ). Therefore S ⊆ T ∪ (S − T).

II-4. Let X = [a] and Y = [b]. Then X (resp. Y ) is the set of all integers of the form a + nr
(resp. b + ns), where r (resp. s) ranges over Z. Therefore S = {x + y | x ∈ X , y ∈ Y } is the set of
integers of the form (a+ b) + n(r + s). This set is nothing other than the set [a+ b] = [a] + [b].

II-5. Let n = 5,X = [2]5,Y = [3]5. Then X (resp. Y ) is the set of all integers congruent to
2 (resp. 3) mod 5. While XY is defined to be the set of all integers congruent to 1 mod 5, the set
{xy | x ∈ X , y ∈ Y } does not have 1 as its element.

II-6.
+ [0] [1] [2] [3] [4]
[0] [0] [1] [2] [3] [4]
[1] [1] [2] [3] [4] [0]
[2] [2] [3] [4] [0] [1]
[3] [3] [4] [0] [1] [2]
[4] [4] [0] [1] [2] [3]

× [0] [1] [2] [3] [4]
[0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4]
[2] [0] [2] [4] [1] [3]
[3] [0] [3] [1] [4] [2]
[4] [0] [4] [3] [2] [1]

II-7.
r [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

r2 − 3r [0] [8] [8] [0] [4] [0] [8] [8] [0] [4]

[6] = [−4], [7] = [−3], [8] = [−2], [9] = [−1] might have simplified the calculations.
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II-8. [0]+[1]+· · ·+[n−1] = [0+1+· · ·+n−1] = [n(n−1)/2]. Therefore, [n(n−1)/2] = [0]
if and only if n divides n(n− 1)/2 if and only if 2 divides n− 1.

II-9.

× [0] [1] [2] [3] [4] [5]
[0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5]
[2] [0] [2] [4] [0] [2] [4]
[3] [0] [3] [0] [3] [0] [3]
[4] [0] [4] [2] [0] [4] [2]
[5] [0] [5] [4] [3] [2] [1]

In general, the number of [0]n’s in the [a]n row is r = gcd(a, n). For example, when n = 1,
there should be gcd(2, 6) = 2 in the [2]6 row and gcd(3, 6) = 3 in the [3]6 row etc.

To see this we need to count the number of distinct [b]n’s in Zn such that [a]n[b]n = [0]n. For
such b, it follows that n divides ab. Let s be a the positive integer defined by rs = n. By definition,
s is coprime to a, i.e. gcd(s, a) = 1. As s divides ab, it divides b.

The elements [s]n, [2s]n, . . . , [rs]n of Zn are distinct and they all yield [0]n when multiplied by
[a]n.

II-10. Firstly, we compute [9]−1
17 . By definition, this is [y] such that [9][y] = [1]. It therefore

suffices to find an integer y such that 9y + 17z = 1. By Euclid’s algorithm or otherwise, we find
that 9 · 2 + 17 · (−1) = 1. Hence [9]−1 = [2]. Plugging this into the equation, we are asked to
solve [9][x]+ [1] = [11][2] = [22] = [5], i.e. [9][x] = [4]. Multiplying [9]−1 on both sides, the LHS
becomes [9]−1[9][x] = [1][x] = [x], while the RHS becomes [9]−1[4] = [2][4] = [2 · 4] = [8]. In
conclusion, [x] = [8].

II-11. If n is a positive integer, [a]n has a multiplicative inverse inZn if and only if gcd(a, n) = 1
(see lecture notes!). For brevity, we let φ(n) denote the number of integers 1 6 a 6 n which are
coprime to n– this is often referred to as Euler’s totient/φ function. Following this nomenclature,
φ(19) = 18, φ(20) = 8 and φ(66) = 20.

For example, to compute φ(20) as follows. Firstly, 20 = 22 · 5, so we need to eliminate from
{1, . . . , 20} the integers that are divisible by 2 or 5. There are 20/2 = 10 integers that are divisible
by 2, while 20/5 = 4 integers that are divisible by 5. However, multiples of 10(= 5·2) are counted
twice, so need to subtract 20/10 = 2 from the list of ‘to-be-eliminated’ integers. Perhaps, drawing
a Venn’s diagram might be helpful. In conclusion, φ(20) = 20− (10 + 4− 2) = 20− 12 = 8.

There is indeed a formula for computing φ(n). If p is a prime number, it is an easy exercise
to check φ(pr) = pr−1(p − 1). On the other hand, it is a much harder exercise to check if a and
b are positive integers that are coprime, then φ(ab) = φ(a)φ(b). Granted, if n =

∏
p

prp , then

φ(n) =
∏
p

prp−1(p−1). For example, φ(20) = φ(22 ·5) = φ(22)φ(5) = 22−1(2−1)(5−1) = 8.

Also φ(66) = φ(2 · 3 · 11) = (2− 1)(3− 1)(11− 1) = 20.
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