II-1. $x \mathfrak{R} y$ if and only no integer r satisfies $x<r \pi<y$ or $y<r \pi<x$. We show the transitivity by its contrapositive- if $x \mathscr{R} z$ then either $x \mathscr{R} y$ or $y \mathscr{R} z$. Suppose $x \mathscr{R} z$ holds, i.e. there exists an integer r such that $x<r \pi<z$ or $z<r \pi<z$ holds. Suppose $x<r \pi<z$ holds. Comparing y with $r \pi$, we see that they cannot possibly be equal, hence either $r \pi<y$ or $y<r \pi$ holds. If the former holds, then $x<r \pi<y$, hence $x \mathscr{R} y$. If the latter holds, then $y<r \pi<z$, hence $y \mathscr{R} z$.

The equivalence class $[24]_{\mathcal{R}}$ is $\{22,23,24,25\}$.
II-2. The set of all squares in the plane \mathbb{R}^{2} with horizontal and vertical sides and centre $(0,0)$.
II-3. Parts (elements of a partition) are defined to be non-empty. It is therefore necessary to assume T is non-empty, as well as it is a proper subset of S. To prove that $\{T, S-T\}$ is a partition, we note (1) by the added assumption, neither T nor $S-T$ is empty (2) $T \cap(S-T)=\varnothing$ holds by definition (3) $T \cup(S-T)=S$. By definition, T and $S-T$ are both subsets of S, hence $T \cup(S-T) \subseteq S$ holds. On the other hand, if x is an element of S, then exactly one of the following two cases holds: either x lies in T (in which case x lies in T) or x does not lie in T (in which case x lies in $S-T)$. Therefore $S \subseteq T \cup(S-T)$.

II-4. Let $X=[a]$ and $Y=[b]$. Then X (resp. Y) is the set of all integers of the form $a+n r$ (resp. $b+n s$), where $r($ resp. s) ranges over \mathbb{Z}. Therefore $S=\{x+y \mid x \in X, y \in Y\}$ is the set of integers of the form $(a+b)+n(r+s)$. This set is nothing other than the set $[a+b]=[a]+[b]$.

II-5. Let $n=5, X=[2]_{5}, Y=[3]_{5}$. Then X (resp. Y) is the set of all integers congruent to 2 (resp. 3) mod 5. While $X Y$ is defined to be the set of all integers congruent to $1 \bmod 5$, the set $\{x y \mid x \in X, y \in Y\}$ does not have 1 as its element.

II-6.

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
$2]$	[2]	[3]	[4]	[0]	[1]
3]	[3]	[4]	[0]	[1]	[2]
4]	[4]	[[1]	[2]	[3]
\times	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[0]	[0]	[0]	[0]
1]	[0]	[1]	[2]	[3]	4]
$2]$	[0]	[2]	[4]	[1]	[3]
3]	[0]	[3]	[1]	[4]	[2]
4]	[0]	[1]	[3]	[2]	[1]

II-7.

r	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$
$r^{2}-3 r$	$[0]$	$[8]$	$[8]$	$[0]$	$[4]$	$[0]$	$[8]$	$[8]$	$[0]$	$[4]$

$[6]=[-4],[7]=[-3],[8]=[-2],[9]=[-1]$ might have simplified the calculations.

II-8. $[0]+[1]+\cdots+[n-1]=[0+1+\cdots+n-1]=[n(n-1) / 2]$. Therefore, $[n(n-1) / 2]=[0]$ if and only if n divides $n(n-1) / 2$ if and only if 2 divides $n-1$.

II-9.

\times	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
$[0]$	$[0]$	$[0]$	$[0]$	$[0]$	$[0]$	$[0]$
$[1]$	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
$[2]$	$[0]$	$[2]$	$[4]$	$[0]$	$[2]$	$[4]$
$[3]$	$[0]$	$[3]$	$[0]$	$[3]$	$[0]$	$[3]$
$[4]$	$[0]$	$[4]$	$[2]$	$[0]$	$[4]$	$[2]$
$[5]$	$[0]$	$[5]$	$[4]$	$[3]$	$[2]$	$[1]$

In general, the number of $[0]_{n}$'s in the $[a]_{n}$ row is $r=\operatorname{gcd}(a, n)$. For example, when $n=1$, there should be $\operatorname{gcd}(2,6)=2$ in the $[2]_{6}$ row and $\operatorname{gcd}(3,6)=3$ in the $[3]_{6}$ row etc.

To see this we need to count the number of distinct $[b]_{n}$'s in \mathbb{Z}_{n} such that $[a]_{n}[b]_{n}=[0]_{n}$. For such b, it follows that n divides $a b$. Let s be a the positive integer defined by $r s=n$. By definition, s is coprime to a, i.e. $\operatorname{gcd}(s, a)=1$. As s divides $a b$, it divides b.

The elements $[s]_{n},[2 s]_{n}, \ldots,[r s]_{n}$ of \mathbb{Z}_{n} are distinct and they all yield $[0]_{n}$ when multiplied by $[a]_{n}$.

II-10. Firstly, we compute $[9]_{17}^{-1}$. By definition, this is $[y]$ such that $[9][y]=[1]$. It therefore suffices to find an integer y such that $9 y+17 z=1$. By Euclid's algorithm or otherwise, we find that $9 \cdot 2+17 \cdot(-1)=1$. Hence $[9]^{-1}=[2]$. Plugging this into the equation, we are asked to solve $[9][x]+[1]=[11][2]=[22]=[5]$, i.e. $[9][x]=[4]$. Multiplying $[9]^{-1}$ on both sides, the LHS becomes $[9]^{-1}[9][x]=[1][x]=[x]$, while the RHS becomes $[9]^{-1}[4]=[2][4]=[2 \cdot 4]=[8]$. In conclusion, $[x]=[8]$.

II-11. If n is a positive integer, $[a]_{n}$ has a multiplicative inverse in \mathbb{Z}_{n} if and only if $\operatorname{gcd}(a, n)=1$ (see lecture notes!'). For brevity, we let $\phi(n)$ denote the number of integers $1 \leqslant a \leqslant n$ which are coprime to n - this is often referred to as Euler's totient/ ϕ function. Following this nomenclature, $\phi(19)=18, \phi(20)=8$ and $\phi(66)=20$.

For example, to compute $\phi(20)$ as follows. Firstly, $20=2^{2} \cdot 5$, so we need to eliminate from $\{1, \ldots, 20\}$ the integers that are divisible by 2 or 5 . There are $20 / 2=10$ integers that are divisible by 2 , while $20 / 5=4$ integers that are divisible by 5 . However, multiples of $10(=5 \cdot 2)$ are counted twice, so need to subtract $20 / 10=2$ from the list of 'to-be-eliminated' integers. Perhaps, drawing a Venn's diagram might be helpful. In conclusion, $\phi(20)=20-(10+4-2)=20-12=8$.

There is indeed a formula for computing $\phi(n)$. If p is a prime number, it is an easy exercise to check $\phi\left(p^{r}\right)=p^{r-1}(p-1)$. On the other hand, it is a much harder exercise to check if a and b are positive integers that are coprime, then $\phi(a b)=\phi(a) \phi(b)$. Granted, if $n=\prod_{p} p^{r_{p}}$, then $\phi(n)=\prod_{p} p^{r_{p}-1}(p-1)$. For example, $\phi(20)=\phi\left(2^{2} \cdot 5\right)=\phi\left(2^{2}\right) \phi(5)=2^{2-1}(2-1)(5-1)=8$. Also $\phi(66)=\phi(2 \cdot 3 \cdot 11)=(2-1)(3-1)(11-1)=20$.

