MTH 4104 Example Sheet 11 Solutions Shu SASAKI

[I-1. xRy if and only no integer 7 satisfies x < rm < yory < ra < x. We show the transitivity
by its contrapositive— if xRz then cither xKy or yKz. Suppose 4Rz holds, ic. there exists an
integer 7 such thatx < rm < z orz < rm < z holds. Suppose x < r7r < z holds. Comparing y
with rar, we see that they cannot possibly be equal, hence either rm < y ory < rar holds. If the
former holds, then & < rar < v, hence Ky. If the lacter holds, then y < rr < 2, hence yRz.

The equivalence class [24]x is {22, 23,24, 25}.

11-2. The set of all squares in the plane R? with horizontal and vertical sides and centre (0, 0).

[1-3. Parts (elements of a partition) are defined to be non-empty. It is therefore necessary to
assume 7" is non-empty, as well as it is a proper subset of S. To prove that {7, S — T} is a parti-
tion, we note (1) by the added assumption, neither T nor § — T'isempty Q) TN(S—T) = &
holds by definition (3) T'U (S-T) =S By definition, 7" and § — T are both subsets of S,
hence TU (S — T) C S holds. On the other hand, if x is an element of S, then exactly one of the
following two cases holds: either x lies in 7" (in which case x lies in T') or x does not lie in T (in

which case x lies in § — T'). Therefore S C TU (S — T).

[1-4. Let X = [a] and Y = [b]. Then X (resp. Y) is the set of all integers of the form a + nr
(resp. b + ns), where r (resp. ) ranges over Z. Therefore § = {x+y|x € X,y € Y} is the set of
integers of the form (@ + b) 4+ n(r + s). This set is nothing other than the set [@ + b] = [a] + [b].

II-5. Letn = 5, X = [2]5, Y = [3]5. Then X (resp. Y) is the set of all integers congruent to
2 (resp. 3) mod 5. While XY is defined to be the set of all integers congruent to 1 mod 5, the set
{xy|x € X,y € Y} does not have 1 as its element.

11-6.
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11-7.
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[1-8. [0]+[1]+- - -+[n—1] = [04+1+---+n—1] = [n(n—1)/2]. Therefore, [n(n—1)/2] = [0]
if and only if n divides n(n — 1) /2 if and only if 2 divides n — 1.

11-9.
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In general, the number of [0],’s in the [a], row is 7 = ged(a,n). For example, when n = 1,
there should be ged(2,6) = 2 in the [2]¢ row and ged(3,6) = 3 in the [3]g row etc.

To see this we need to count the number of distinct [0],’s in Z,, such that [a],[b], = [0],. For
such b, it follows that 7 divides ab. Let s be a the positive integer defined by 7s = n. By definition,
§ is coprime to @, i.c. ged(s,a) = 1. As s divides ab, it divides b.

The elements [s],,, [25],, - - -, [1$]u of Z, are distinct and they all yield [0], when multiplied by
lal,.

[1-10. Firstly, we compute [9]37. By definition, this is [y] such that [9][y] = [1]. It cherefore
suffices to find an integer y such that 9y 4+ 17z = 1. By Euclid’s algorithm or otherwise, we find
that 9 -2 +17 - (—=1) = 1. Hence [9]7" = [2]. Plugging this into the equation, we are asked to
solve [9][x] +[1] = [11][2] = [22] = [5], i.e. [9][x] = [4]. Multiplying [9]~" on both sides, the LHS
becomes [9]71[9][x] = [1][x] = [x], while the RHS becomes [9]7[4] = [2][4] = [2- 4] = [§]. In

conclusion, [x] = [8].

[I-11. If n is a positive integer, [a], has a multiplicative inverse in Z, if and only if ged(a, n) = 1
(see lecture notes!). For brevity, we let ¢(n) denote the number of integers 1 < @ < n which are
coprime to n— this is often referred to as Euler’s totient/¢ function. Fo]]owing this nomenclature,
#(19) = 18, ¢(20) = 8 and ¢(66) = 20.

For example, to compute ¢(20) as follows. Firstly, 20 = 2% - 5, so we need to eliminate from
{1,...,20} the integers that are divisible by 2 or 5. There are 20/2 = 10 integers that are divisible
by 2, while 20/5 = 4 integers that are divisible by 5. However, multiples of 10(= 5-2) are counted
twice, so need to subtract 20/10 = 2 from the list of ‘to-be-eliminated’ integers. Perhaps, drawing
a Venn'’s diagram might be helpful. In conclusion, ¢(20) =20 — (10 +4 —2) =20 — 12 = 8.

There is indeed a formula for computing ¢(n). If p is a prime number, it is an casy exercise
to check ¢(p") = p~1(p — 1). On the other hand, it is a much harder exercise to check if a and
b are positive integers that are coprime, then ¢(ab) = ¢(a)p(b). Granted, if n = Hprf’, then

P

o(n) = Hprf’fl(p— 1). For example, $(20) = ¢(2%-5) = ¢(2%)¢(5) = 227 1(2—1)(5—1) = 8.
Also 6(66) = 6(2-3-11) = (2 = 1)(3 — 1)(11 — 1) = 20



