Assessed conserwork 1 hand in your work by

11 am, 4th & March The problem set can be found in the Week 5 tab & to MTH 4104 ample page.

LOST WREK, I defined: Det A stroup (G, *) is a set Ci with operation * Satistylus (G) id (1, b & G) 0*b E G (G1) if a, b, c ∈ G. $0 \times (0 \times 0) = (0 \times 6) \times 0$ (G2) There is an element e of G

 $4.t. \quad 2*\alpha = \alpha*e = \alpha$ A WE C (G3) For every element on in G, HOW exists be G sit. $\alpha * b = b * \alpha = c$ If (G, X) satisfies (44) ta, 666, axb=b*a, it an obelin group. Prop 14 * to isentity element in (G2) is unique

* The inverse is a is unigne Y NEG on two more offerfices R_{100} Det A ting 5 a set R which comes equipped with two operations 1 (addition) X (multiplication)

(R+0) If $\alpha, b \in R$, ten atbER. (R+1) If a,b,c e R, $-fen \quad \alpha + (b+c) = (\alpha+b)+c$ in R (R+2) Thone is an element 0 in R Satisfying $a+0=0+a=\alpha$ $\forall \alpha \in \mathcal{R}$. (R+3) For every element a in R

thom exists 6 in R st. a+b=b+a=0(R+4) $\forall a,b \in R,$ a+b=b+a, $(RXO) \forall ab \in R$ axbeR.If a.b. C are elements in R $+ \ln \alpha \times (b \times c) = (\alpha \times b) \times c$

$$(R \times +) \text{ if } a,b, (C \in R, fen)$$

$$\alpha \times (b+C) = a \times b + a \times C$$

$$(R + x) \text{ if } a,b, (C \in R, Hen)$$

$$(b+C) \times \alpha = b \times \alpha + C \times \alpha$$

$$(b+C) \times \alpha = b \times \alpha + C \times \alpha$$

$$A \times (b+C) \text{ is not inessally}$$

$$Same as (b+C) \times \alpha$$

$$R \in B_Y (R+0) - (R+4),$$

$$(G, *) = (R, +1)$$

(A ting is a group). RET Shall write ab from now an Det A Fing (R, +, X) is a commutative times if $\forall a, b \in R$, ab = ba

O, or to identity a Roment Example $W, r, t = \frac{1}{2}$ needs to be in a tive R • {0} 0 + 0 = 0 $0 \times 0 = 0$ This is to smallest pusible ting. · (Z, +, x) is a ting.

• The set C(X) is polynamials

in the variable
$$X$$
 with coffs in C ,
$$C_{0}X^{0} + C_{0}X^{0-1} + \cdots + C_{1}X + C_{0}$$

$$C_{7} \in C$$

$$(X^{2} + X + 1) + (X^{3} + 3X)$$

$$= X^{3} + X^{2} + (4X + 1) = 4c.$$

$$(X + 1) \times = X^{2} + X = 4c.$$

The set M2(C) & 2-by-2

matrices with entries in
$$R$$

is a fing:

$$(ab) + (a'b') = (a+a'bb')$$

$$a.b.c.dec$$

$$M2(R)$$

$$(ab) (a'b') = (ab+bb')$$

$$(ab+bc'ab+bb')$$

$$(a'bc'ab+bc'ab+bb')$$

t abe G X to be Qxb=C is to clutity element where c \overline{a} (G, X)Ten (G, + 9 X) (5 a * commutative ting RCAKS ab = eba=2 50 ab = ba = c

R= the set of man-negative integers t W know for intogral Isl (R, +, X) a Fing? This is not a fing. It faits on (R+3) First of all 0 is 0 in (R+2) but 2

Print of all 0 is 0 in (R+2) but 2

Print of all 0 is 0 in (R+2) but 2 1,2,3,--- 655 as we know then 2+6=0 Fing? Is this (R,+,X) a

(-2) is $\sqrt{27}$ a non-negative inter-This is not a trug either because 0 is Not in R 8 (R+2) dos Not hold 0 = [-1

$$\frac{2(2)}{2(2)} = \frac{2(2+b2)}{2(2+b2)} = \frac{2$$

0 (cp in R+2): 0+00 This is called the ting at Stansian integers D