Assessed coursework 1 hand in your work by 11 am , 4 th of March

The problem set can be found in He Week 5 tab of He MTH 4104

QMplus page

Lost week, I detined:
Def A group $(G, *)$
is a set G vith opretation *
Satstying

$$
\begin{aligned}
& (G 0) \text { if } a, b \in G_{1} \\
& a * b \in G
\end{aligned}
$$

(G1) if $a, b, c \in G$

$$
a *(b * c)=(a * b) * c
$$

(G2) Thew is an element e if G
$s t$.

$$
\begin{array}{r}
l * a=a * e=a \\
\forall a \in G
\end{array}
$$

$(G 3)$ For every element a in G, Hene exics $b \in G$ s.t.

$$
a * b=b * a=e
$$

If $(G, *)$ satislos
(44) $\forall a, b \in G, \quad a * b=b * a$,
we call it an chelimg guap.
Prop 14 * to ientity element in (G2) is unique.

* The inverse if a is unigue

$$
\forall a \in G
$$

and two mave coserticms.
Rings
Det A fing is a set R which comes cauipled with two opertition

+ (acdition)
X (mutipiciation)

$$
\begin{aligned}
& (R+0) \text { If } a, b \in R, \\
& \operatorname{ten} a+b \in R . \\
& (R+1) \text { If } a \cdot b, c \in R, \\
& \operatorname{ten} a+(b+c)=(a+b)+c \\
& \\
& \quad \text { in } R .
\end{aligned}
$$

$(R+2)$ Thene is an element O in R Satistyig $a+0=0+a=a$

$$
\forall a \in R
$$

$(R+3)$ For every elemont a in R
thew exists b in R st.

$$
a+b=b+a=0
$$

$$
\begin{aligned}
& (R+4) \forall a, b \in R . \\
& a+b=b+a . \\
& (R \times 0) \quad \forall a, b \in R \\
& a \times b \in R .
\end{aligned}
$$

$(R \times 1)$ If $a_{i} b_{1} C$ are elements in R_{1} $\operatorname{tim} a \times(b \times c)=(a \times b) \times c$
$(R x+)$ If $a, b, c \in R$, ton

$$
a \times(b+c)=a \times b+a \times c
$$

$(R+x)$ If $a_{1} b_{1}(\in R$, then.

$$
(b+c) \times a=b \times a+c \times a
$$

Note that
$a \times(b+c)$ is not necesastly same as $(b+c) \times a$
R $B_{y}(R+0)-(R+4)$,

$$
(G, *)=(R,+1
$$

is a group
(A ting is a glow p)
RK I shall write ab for $a \times b$ from new on

Def A Hing (R, t, x) is a commentative ting if $\forall a, b \in R, \quad a b=b a$.

Example 0 , or to identity element

$$
w_{1}, i_{1}{ }^{\prime \prime} t^{\prime \prime}
$$

needs to be in a ting R

- $\{0\} \quad 0+0=0$

$$
0 \times 0=0
$$

This is the smallest profile ting.

- $\left(\mathbb{Z}_{1}+, x\right)$ is a ting
- The Set $\mathbb{C}[x]$ if puynounids
in che variate X with coifs in \mathbb{C}.

$$
\begin{aligned}
& C_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0} \\
& \left(c_{i} \in \mathbb{C}\right. \\
& \left.=x^{3}+x+1\right)+\left(x^{2}+4 x+1\right. \text { etc. } \\
& (x+1) x \\
& =x^{2}+x \quad \text { etc. }
\end{aligned}
$$

- The set $M_{2}(\mathbb{C})$ of $2-b y-2$
matrios with entries in \mathbb{R} is a ting

$$
\begin{aligned}
& +: \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
a+a^{\prime} & b b^{\prime} b^{\prime} \\
c+d^{\prime} & d+d^{\prime}
\end{array}\right. \\
& \text { a.b.c. } d \in \mathbb{C} \\
& M_{2}(\mathbb{R}) \\
& x:\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right) \quad e^{M_{2}(\mathbb{R})} \\
& =\left(\begin{array}{cc}
a a^{\prime}+b c^{\prime} & a b^{\prime}+b d^{\prime} \\
c a^{\prime}+d c^{\prime} & c b^{\prime}+d d^{\prime}
\end{array}\right) \\
& 0 \text { : } \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \in M_{2}(\mathbb{R})
\end{aligned}
$$

$$
\begin{aligned}
X \text { to be } & \forall a, b \in G \\
& a \times b=e
\end{aligned}
$$

when e is the identity dement

$$
\text { in }(G, *)
$$

$\operatorname{Ten}\left(G_{1}+_{11}, X\right)$ is a * commentative ring.
because $a b=e$

$$
b a=e
$$

so $a b=b a=c$.

- $R=$ to set of non-negatile integers

$$
0,1,2, \ldots
$$

x us we know for integers'

Is' (R, t, X) a ring?
This is nit a ting. It fails on ($R+3)$
First of all, 0 is 0 in $(R+2)$ bat 2

- $R=$ the set of posithe integers does dir
t

$$
1,2,3, \ldots b b_{s t}
$$

x as we know then $2+b=0$
Is this $\left(R_{1}+x\right)$ a ring?

(-2) is NIT
a men-negatice integer

This is not a ting either because O is NII in R \& $(R+2)$ does not hold.

- $\bar{z}=\sqrt{-1}$

$$
\begin{aligned}
& \mathbb{Z}[i]:=\{a+b i \mid a, b \\
& \mathbb{Z}\} \\
& t:(a+b i)+\left(a^{\prime}+b^{\prime} i\right) \\
& =\left(a+a^{\prime}\right)+\underset{\sim}{\left(b+b^{\prime}\right)} i \\
& x:(a+b i)\left(a^{\prime}+b^{\prime} i\right)^{4} \\
& =\underbrace{\left(a a^{\prime}-b b^{\prime}\right)}_{\underset{\mathbb{Z}}{ }}+\underbrace{\sim_{i}}_{\left.\underset{\mathbb{Z}}{\left(a^{\prime} b+a b^{\prime}\right)^{\prime}}\right)}
\end{aligned}
$$

O(os in R+2): $0+0 i$
II
0.

This is called the ring of Gansian intragers D

