Recap quiz (paraphrased detns/theorems)
Consider on LP in standard equation form maximise $\underline{c}^{\top} \underline{x}$
subject to $A \underline{x}=\underline{b}, \underline{x} \geqslant 0$.
A basic feasible solution is a feasible solution x in which the non-zero entries of x correspond to linearly independent columns of A.

Last time we proved two results
(1) Every LP (in standard equation form) has an optimal solution that is an extreme point solution (provided it has at least one optimal solution).
(2) Given an LP in standard equation form every basic feasible solution is an extreme point solution and vice versa. (prot not completed)
(1) +(2) imply

Cocdlary If an LP has an optimal solution, then it also has an optimal solution that is also a basic feasible solution.

A basic feasible solution is a feasible solution x in which the non-zero entries of x correspond to linearly independent columns of A.

Detn For a basic feasible solution $x=\left(\begin{array}{l}x \\ 1 \\ x_{n}\end{array}\right)$ of an LP in standard equation form
the basic variables are those x_{i} that are non-zero the non-basic variables are thane x; that are zero.

Simplex algorithm (weeks 5/6)
General metuad for finding optimal sclentions to LP
$1^{\text {st }}$ half: understand ideas
$2^{\text {nd }}$ half: description of algaritum + example
useful closervations about L_{s} in standard equation form
Example
(A)

$$
\begin{array}{lll}
\text { maximise } & 3 x_{1}+2 x_{2}+x_{3} & \text { obj } \\
\text { sub tc } & x_{1}+2 x_{2}+2 x_{3}=5 & c_{1} \\
& 2 x_{1}-x_{2}-x_{3}=4 & c_{2} \\
& x_{1}, x_{2}, x_{3} \geqslant 0
\end{array}
$$

Cbs let C and C be two constraints of $L P$. Can replace C with $C+\lambda C^{\prime}$ for $\lambda \in \mathbb{R}$ and resulting $L P$ has same feasible solutions same objective values same optimal solutions
e.g. (B) maximise $3 x_{1}+2 x_{2}+x_{3}$
sub to $5 x_{1}=13 \quad c_{1}+2 c_{2}$
$2 x_{1}-x_{2}-x_{3}=4 \quad c_{2}$
$x_{1}, x_{L}, x_{>} \geqslant 0$
(A) and (B) have the sane feasible and optimal solutions, so if we solve are then we have solved the other.
(B) maximise $3 x_{1}+2 x_{2}+x_{3}$
sub to $5 x_{1}=13 c_{1}+2 c_{2}$

$$
\begin{aligned}
& 2 x_{1}-x_{2}-x_{3}=4 \quad c_{2} \\
& x_{1}, x_{2}, x_{3} \geqslant 0
\end{aligned}
$$

obs 2 Can add zere to dojective function without changing feasible or optimal solutions
e.g. in (B) c_{2} says that $2 x_{1}-x_{2}-x_{3}-4=0$

Add this 0 to objective function
(c) maximise $5 x_{1}+x_{2}-4$
sub to $5 x_{1}=13$

$$
\begin{aligned}
& 2 x_{1}-x_{2}-x_{3}=4 \\
& x_{1}, x_{2}, x_{3} \geqslant 0 .
\end{aligned}
$$

(B) and (C) have sane feasible and optimal solutions
(A), (B), (C) all "equivalent"

Rem

- Note that (C) not technically on LP but essentially it is
- Cbs 1 and abs z will be used to rewrite LP into a form where it becones cbuious what the optimal solution is.

Example maximise $4 x_{1}+3 x_{2}$
sub to

$$
\begin{aligned}
x_{1}+x_{2} & \leqslant 12 \\
2 x_{1}+x_{2} & \leqslant 16 \\
2 x_{1}+3 x_{2} & \leqslant 40 \quad x_{1}, x_{2}, x_{3} \geqslant 0
\end{aligned}
$$

Change to standard equation form.

$$
\begin{aligned}
& \text { maximise } 4 x_{1}+3 x_{2} \\
& \text { subtc }=12 c_{1} \\
& x_{1}+x_{2}+s_{1}+s_{2}=16 c_{2} \\
& 2 x_{1}+x_{2}+s_{3}=40 c_{3}
\end{aligned}
$$

Idea: Start with a basic feasible solution BFS In each step, find a better BFS We knar sone BES is optimal
Start BFS I: $\binom{x_{1}}{x_{2}}=\binom{0}{0}$ i.e. $\left(\begin{array}{c}x_{1} \\ x_{2} \\ s_{1} \\ s_{2} \\ s_{3}\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 12 \\ 16 \\ 40\end{array}\right)$
Objective vale of BFSI is $4 \times 0+3 \times C=0$.
con improve by increasing x_{1} (or x_{2})
How large can we make x_{1} (while keeping $x_{2}=0$) if we want to satisty all constraints and sign restrictions?
Con take ${ }_{2} C_{1}=8$ (it $x_{1}>8$ cannot satisty C_{2}) Now BFS2 $\left(\begin{array}{l}x_{1} \\ x_{2} \\ s_{1} \\ s_{2} \\ s_{3}\end{array}\right)=\left(\begin{array}{l}8 \\ 0 \\ 4 \\ 0 \\ 24\end{array}\right)$ once we decide x_{1}, x_{2}, easy to Worle cut $S_{1,} S_{2}, S_{3}$
$\begin{array}{rrr}\text { (1) maximise } 4 x_{1}+3 x_{2} & c b_{j} \\ \text { subtc } \begin{array}{ll}x_{1}+x_{2}+s_{1} \\ 2 x_{1}+x_{2}\end{array}=12 c_{1} \\ x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \geq 0 & 2 x_{1}+3 x_{2} & =16 c_{2} \\ & +s_{3} & =40 c_{3}\end{array} \quad$ BFS2 $\left.\quad \begin{array}{l}x_{1} \\ x_{2} \\ s_{1} \\ s_{2} \\ s_{3}\end{array}\right)=\left(\begin{array}{l}8 \\ 0 \\ 4 \\ 0 \\ 24\end{array}\right)$
Rewrite (1) using obs I and obs 2 to "eliminate" x_{1} to see which ctwer variables we con increase
(2) \max

$$
\begin{aligned}
x_{2}-2 s_{2}+32 & \quad \text { obj }-2\left(c_{2}-16\right) \\
\frac{1}{2} x_{2}+s_{1}-\frac{1}{2} s_{2} & =4 \quad c_{1}-\frac{1}{2} c_{2} \\
x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} s_{2} & =8 \quad \frac{1}{2} c_{2} \\
2 x_{2}-s_{2}+s_{3} & =24 \quad c_{3}-c_{2}
\end{aligned}
$$

Sub $\in C$
(1) and (2) ane equivalent
con imprae BFS2 by incueasing x_{2}
How much con we increase x_{2} (keeping $s_{2}=0$) it we wont to satisty all constraints/ sign vestrictians?
$c_{1}: x_{2} \uparrow 8$ if $S_{1} \downarrow 0$
$C_{2}: x_{2} \uparrow 16$ if $x_{1} \downarrow 0$
can take $x_{2}=8$.
$c_{3}: x_{2} \uparrow_{12}$ if $s_{3} \downarrow 0$
Then BFS3

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right)=\left(\begin{array}{l}
4 \\
8 \\
0 \\
0 \\
8
\end{array}\right)
$$

obj value for BFS3 is 40

$$
\begin{aligned}
& \text { adj value }=40
\end{aligned}
$$

Rewrite (2) using obs l and 2 to see how we can improve.
(3) maximine $-2 s_{1}-s_{2}+40$ obj $-2\left(c_{1}-4\right)$
sub $\in C$

$$
\begin{aligned}
& x_{2}+2 s_{1}+s_{2}=8 \quad 2 c_{1} \\
& x_{1}-s_{1}+s_{2}=4 \quad c_{2}-c_{1} \\
& 4 s_{1}+s_{2}+s_{3}=8 \quad c_{3}-4 c_{1} \\
& x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \geqslant 0 .
\end{aligned}
$$

(3) and (2) and (1) are equivalent.
max value for objective function is 4 C because $S_{1}, s_{2} \geqslant 0$

So BES2: $\left(\begin{array}{l}4 \\ 8 \\ 0 \\ 0 \\ 8\end{array}\right)$ is an optimal \quad solution.

Summary

- Start with a BFS
- At each step find a BFS with larger objective value by increasing one variable from 0 and decreasing ane variable to 0 .
- Rewrite LP sc it becomes obvious which variable te increase in the next step
- Stop when we see that we cannot increase the objective function my more.

Systematic description of simplex algoritum
Simpler case when $\underline{b} \geqslant 0$.
Assume you are given an $L P$ in standard inequality form maximise ${C^{\top}}^{x} \underline{x}$
subject to $A \underline{x} \leqslant \underline{b} \quad \underline{x} \geqslant \underline{0}$.
Here A is min matrix, $\underline{c} \in \mathbb{R}^{n}, \underline{b} \in \mathbb{R}^{m}, \quad \underline{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right) \in \mathbb{R}^{n}$ (so m constraints, n variables)
(1) Initialisation:

Put in standard equation form by introducing m slate variables $s_{1} \ldots, s_{m}$.
maximise $\underline{c}^{\top} \underline{x}^{\prime}$
subjet to $\quad A^{\prime} \underline{x}^{\prime} \leqslant \underline{b}, \underline{x}^{\prime} \geqslant 0$
$A^{\prime}=(A \mid I) \quad m \times(n+m)$ matrix
$\underline{c}^{\prime \top}=(\underline{c} \mid \underline{O}) \in \mathbb{R}^{n+m}$ land m zeros to $\left.\underline{c}^{\top}\right)$

$$
\underline{x}^{\prime}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n} \\
s_{1} \\
\vdots \\
s_{m}
\end{array}\right) \in \mathbb{R}^{n+m}
$$

Construct initial tableau (see example)

(2) Repeatedly apply pivot steps as Adlaws. consider current fableux

Basic variables appear here

Label rows $R_{1}, R_{2}, \ldots, R_{m}, R_{\text {final }}$ (just so we con refer to them)
(a) Find largest positive entry in $\underline{c}^{*} T$, say c_{j}^{*}, and highlight $j^{\text {th }}$ column
(b) Look at each entry in hightighted column ie. the entries $A_{r_{j}}^{*} r=1, \ldots, m$ For each $r=1, \ldots, m$ it $A_{r_{j}}^{*} \geqslant 0$ let $z_{r}=b_{r} / A_{r_{j}^{*}}^{*}$ and record this number z_{r} next to $b_{r}{ }^{*}$
Of all z_{r}, pick smallest, say z_{i}, and highigght its row, ie. Ri
Basic variables appear here

(c) We "lear" jut column (i.e. highlighted column) using vow operations

- Replace $i^{\text {th }}$ row R_{i} (i.e. highlighted row) by $R_{i}{ }^{\prime}=R_{i} / A_{i}^{*}$ (so isth entry is now 1)
- Replace every other row R_{r} with $R_{r}^{\prime}=R_{r}-A_{r j}^{*} R_{i}^{\prime} \quad$ (including $R_{\text {final }}$) So all entries in highlighted column become zero except isth.
- Replace highlighted raw variable with highlighted column var able (keeping all cather variables unchanged).
- Nan have our new tableau
(3) Repeat (2) until either
(a) $C^{* T}$ has no positive entries in step $2(a)$.

In this case the optimal solution is obtained by setting each variable on the far lett to the value on the for right and all other variables to zero The maximum objective value is the negative of the bottom right entry.
(b) There are no positive entries in the highlighted column in step 2(b).
If this happens the $L P$ is unbounded

Important notes

- In each pivot,
the variable at the top of highlighted column is called the entering variable
the variable to left of highlighted raw is called the leaving variable.
- Tie breaking rules.

When picking longest value in a row/smallest value in a column If there is a tie-break, pick the one fortherest lett/ closest to the top.

- How would you summarise this for exam?!
- Roughly what is the reason for steps 2(a) 2(b) 2(c).

Apply simplex algcritum to
maximile $4 x_{1}+3 x_{2}$
sub to
(1)

Standard ean form
maximike $4 x_{1}+3 x_{2}$
sub to

$$
\begin{aligned}
& x_{1}+x_{2}+s_{1}=12 \\
& 2 x_{1}+x_{2}+s_{2}=16 \\
& 2 x_{1}+3 x_{2}+s_{3}=40 \\
& x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \geqslant 0 .
\end{aligned}
$$

Initial tablean

	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	
s_{1}	1	1	1	0	0	12
s_{2}	2	1	0	1	0	16
s_{3}	2	3	0	0	1	40
	4	3	0	0	0	0

Pinct step

$$
2(a), 2(b)
$$

Step 2(c)

$$
\begin{array}{lc|ccccc|c}
R_{1}^{\prime}=R_{1}-\frac{1}{2} R_{2} & S_{1} & 0 & 1 / 2 & 1 & -1 / 2 & 0 & 4 \\
R_{2}^{\prime}=\frac{1}{2} R_{2} & x_{1} & 1 & 1 / 2 & 0 & 1 / 2 & 0 & 8 \\
R_{3}^{\prime}=R_{3}-R_{2} & S_{3} & 0 & 2 & 0 & -1 & 1 & 24 \\
R_{f}^{\prime}=R_{f}-2 R_{2} & & 0 & 1 & 0 & -2 & 0 & -32
\end{array}
$$

Apply pivot again.

		x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	
R_{1}	s_{1}	0	$1 / 2$	1	$-1 / 2$	0	4

$$
\begin{array}{ll|ccccc|c}
& & x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\
R_{1}^{\prime}=2 R_{1} & x_{2} & 0 & 1 & 2 & -1 & 0 & 8 \\
R_{2}^{\prime}=R_{2}-R_{1} & x_{1} & 1 & 0 & -1 & 1 & 0 & 4 \\
R_{3}^{\prime}=R_{3}-4 R_{1} & s_{3} & 0 & 0 & -4 & 1 & 1 & 8 \\
R_{f}^{\prime}=R_{f}-2 R_{1} & & 0 & 0 & -2 & -1 & 0 & -40
\end{array}
$$

Last row has no positive entries SO 3(a) tells us to step.
optimal schition is $\left(\begin{array}{l}x_{1} \\ x_{2} \\ s_{1} \\ s_{L} \\ s_{3}\end{array}\right)=\left(\begin{array}{l}4 \\ 8 \\ 0 \\ 0 \\ 8\end{array}\right)$
optimal value do dojective function is

Apply simplex to following example
maximise $4 x_{1}+\frac{1}{2} x_{2}$
Sub to

$$
\begin{gathered}
x_{1}+x_{2} \leqslant 3 \\
\frac{1}{2} x_{1}+x_{2} \leqslant 2 \\
\frac{1}{2} x_{1}-x_{2} \leqslant 1 \\
x_{1}, x_{2} \geqslant 0
\end{gathered}
$$

(1) Put in standard equn form
$\max 4 x_{1}+\frac{1}{2} x_{2}$
sub to $x_{1}+x_{2}+s_{1} \quad=3$

$$
\begin{gathered}
\frac{1}{2} x_{1}+x_{2}+s_{2}=2 \\
\frac{1}{2} x_{1}-x_{2}+s_{3}=1 \\
x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \geqslant 0
\end{gathered}
$$

Initial tableaux

	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	
s_{1}	1	1	1	0	0	3
s_{2}	$1 / 2$	1	0	1	0	2
s_{3}	$1 / 2$	-1	0	0	1	1
	4	$1 / 2$	0	0	0	0

Pivot step 2
$2 a, 2 b$

		x_{1}	x_{2}	s_{1}	s_{2}	s_{3}		
	s_{1}	1	1	1	0	0	3	$3 / 1=3$
R_{2}	s_{2}	$1 / 2$	1	0	1	0	2	$2 / 1 / 2=4$
R_{3}	s_{3}	$1 / 2$	-1	0	0	1	1	$1 / 2 / 1=1 / 2$
$R_{\text {Anal }}$		4	$1 / 2$	0	0	0	0	

$2 C$

$$
\begin{array}{cc|ccccc|c}
& x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\
\cline { 2 - 7 } & R_{1}^{\prime}=R_{1}-R_{3}^{\prime} & s_{1} & 0 & 3 & 1 & 0 & -2 \\
1 \\
R_{2}^{\prime}=R_{2}-\frac{1}{2} R_{3}^{\prime} & s_{2} & 0 & 2 & 0 & 1 & -1 & 1 \\
R_{3}^{\prime}=R_{3} / 1 / 2 & x_{1} s_{3} & 1 & -2 & 0 & 0 & 2 & 2 \\
R_{\text {final }}^{\prime}=R_{\text {final }}-4 R_{3}^{\prime} & 0 & 17 / 2 & 0 & 0 & -8 & -8
\end{array}
$$

Pivot again with updated table

Apply piuct to updated tableax.

		x_{1}	x_{2}	s_{1}	s_{2}	s_{3}		
	s_{1}	0	3	1	0	-2	1	$1 / 3$
R_{2}	s_{2}	0	2	0	1	-1	1	$1 / 2$
R_{3}	x_{1}	1	-2	0	0	2	2	-
$R_{\text {final }}$		0	$17 / 2$	0	0	-8	-8	

$$
\begin{array}{lc|ccccc|c}
R_{1}^{\prime}=\frac{1}{3} R_{1} & x_{2} & x & 0 & 1 & 1 / 3 & 0 & -2 / 3 \\
\hline R_{2}^{\prime}=R_{2}-2 R_{1}^{\prime} & S_{2} & 0 & 0 & -2 / 3 & 1 / 3 & 1 / 3 & 1 / 3 \\
R_{3}^{\prime}=R_{3}+2 R_{1}^{\prime} & x_{1} & 1 & 0 & 2 / 3 & 0 & 2 / 3 & 8 / 3 \\
\hline R_{\text {final }}^{\prime}=R_{\text {final }}-\frac{17}{2} R_{1}^{\prime} & 0 & 0 & -17 / 6 & 0 & -\frac{7}{3} & -\frac{65}{6}
\end{array}
$$

We do not apply anotzer pivat becanse 3(a) tells us we have found on aptimal solurtion.

Cptimal solution

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right)=\left(\begin{array}{c}
8 / 3 \\
1 / 3 \\
0 \\
2 / 3 \\
0
\end{array}\right)
$$

abj value for
this aptimal sclution is $\frac{-65}{6}$

Example
maximise $2 x_{1}-x_{2}+8 x_{3}$
subject to

$$
2 x_{3} \leq 1
$$

$$
\begin{array}{r}
2 x_{1}-4 x_{2}+6 x_{3} \leqslant 3 \\
-x_{1}+3 x_{2}+4 x_{3} \leqslant 2 \\
x_{1}, x_{2}, x_{3} \geqslant 0
\end{array}
$$

Standard equation form
maximise $2 x_{1}-x_{2}+8 x_{3}$
subject to

$$
\begin{aligned}
& 2 x_{3}+s_{1}=1 \\
& 2 x_{1}-4 x_{2}+6 x_{3}+s_{2}=3 \\
&-x_{1}+3 x_{2}+4 x_{3}+s_{3}=2 \\
& x_{1}, x_{2}, x_{3} \geqslant 0
\end{aligned}
$$

Initial tableau

	x_{1}	x	x_{3}	s_{1}	s_{2}	s_{3}	
s_{1}	0	0	2	1	0	0	1
s_{2}	2	-4	6	0	1	0	3
s_{3}	-1	3	4	0	0	1	2
	2	-1	8	0	0	0	0

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}		
	s_{1}	0	0	2	1	0	0	1

First pirct

Pivct			x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}
$R_{1}^{\prime}=\frac{1}{2} R_{1}$	x_{3}	X_{4}	0	0	1	$1 / 2$	0	0
$R_{2}^{\prime}=R_{2}-3 R_{1}$	s_{2}	2	-4	0	-3	1	0	0
$R_{3}^{\prime}=R_{3}-2 R_{1}$	s_{3}	-1	3	0	-2	0	1	0
$R_{f}^{\prime}=R_{f}-4 R_{1}$		2	-1	0	-4	0	0	-4

		x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	
	x_{3}	0	0	1	$1 / 2$	0	0	$1 / 2$
R_{1}	x_{1}	2	-4	0	-3	1	0	0
R_{2}	s_{2}	0						
R_{3}	s_{3}	-1	3	0	-2	0	1	0
R_{f}		(2)	-1	0	-4	0	0	-4

$2^{\text {nd }}$ pivat

$\quad x_{1}$	x_{1}	x_{3}	s_{1}	s_{2}	s_{3}			
	$R_{1}^{\prime}=R_{1}$	x_{3}	0	0	1	$1 / 2$	0	0
$R_{2}^{\prime}=\frac{1}{2} R_{2}$	x_{1}	1	-2	0	$-3 / 2$	$1 / 2$	0	0
$R_{3}^{\prime}=R_{3}+\frac{1}{2} R_{2}$	s_{3}	0	1	0	$-7 / 2$	$1 / 2$	1	0
$R_{f}^{\prime}=R_{f}-R_{2}$		0	3	0	-1	-1	0	-4

		x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	
a_{1}	x_{3}	0	0	1	$1 / 2$	0	0	$1 / 2$
R_{2}	x_{1}	1	-2	0	$-3 / 2$	$1 / 2$	0	0
R_{3}	$x_{2} s_{13}$	0	1	0	$-1 / 2$	$1 / 2$	1	0
		0	3	0	-1	-1	0	-4

$3^{\text {rd }}$ pivat

$R_{1}^{\prime}=R_{1}$	x_{3}	0	0	1	$1 / 2$	0	0	$1 / 2$
$R_{2}^{\prime}=R_{2}+2 R_{3}$	x_{1}	1	0	0	$-1 / 2$	$3 / 2$	0	0
$R_{3}^{\prime}=R_{3}$	x_{2}	0	1	0	$-7 / 2$	$1 / 2$	1	0
$R_{f}^{\prime}=R_{f}-3 R_{3}$		0	0	0	$19 / 2$	$-5 / 2$	-3	-4

		x_{1}	x_{1}	x_{3}	s_{1}	s_{2}	s_{3}	
R_{1}	s_{1}	x_{33}	0	0	1	$1 / 2$	0	0
R_{2}	x_{1}	1	0	0	$-1 / 2$	$3 / 2$	0	0
R_{3}	x_{2}	0	1	0	$-1 / 2$	$1 / 2$	1	0

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}		
$R_{1}^{\prime}=2 R_{1}$	s_{1}	0	0	2	1	0	0	1
$R_{2}^{\prime}=R_{2}+17 R_{1}$	x_{1}	1	0	17	0	$3 / 2$	0	$17 / 2$
$R_{3}^{\prime}=R_{3}+7 R_{1}$	x_{2}	0	1	7	0	$1 / 2$	1	$7 / 2$
$R_{f}^{\prime}=R_{f}-19 R_{1}$		0	0	-19	0	$-5 / 2$	-3	$-27 / 2$
1								

all values $\leqslant 0$
so algoritum stops
cptimal soln is $\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ s_{1} \\ s_{2} \\ s_{3}\end{array}\right)=\left(\begin{array}{c}7 / 2 \\ 7 / 2 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right) \quad$ with obj value
cptimal soln to criginal $L P$ is $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{c}17 / 2 \\ 7 / 2 \\ 0\end{array}\right)$.

