Please hand in your work, with your name and student ID explicitly written on the front page, by 11am, the 4th of March (the Maths Office).

Q1. Find all integers X satisfying $13 X \equiv 4 \bmod 2024$. Show your working.
Q2. Let $(G, *)=(\operatorname{Sym}(\{1,2,3\}), \circ)$ be the group of all bijections on the set $\{1,2,3\}$ with composition \circ, as seen in lectures. For brevity, given a triple of distinct integers $\{a, b, c\}=$ $\{1,2,3\}$, we denote by $(a b c)$ the bijection that sends 1 to $a, 2$ to b, and 3 to c. Complete the following Cayley table (calculating the composition of two elements in $\operatorname{Sym}(\{1,2,3\})$:

\circ	(123)	(132)	(213)	(231)	(312)	(321)
(123)						
(132)						
(213)		(231)				
(231)						
(312)						
(321)						

For example, the entry provided computes (213) \circ (132), i.e. the bijection (132) followed by (213) (and not the other way around). Indeed, the first bijection (132) sends 1 to 1 which is then sent by the second bijection (213) to 2 ; similarly, the bijection (132) sends 2 to 3 which is then sent by (213) to 3 . Tracking where each integer goes, we conclude that $(213) \circ(132)=(231)$.

Q3. Keep the notation from Q2. (1) Is the group in Q2 abelian? Justify your answer. (2) Find the identity element e. Explain your reasoning. (3) Let $r=$ (231) and $s=$ (132). Find three independent relations that only involve r, s, e and composition 0 .

Marking Scheme. Q1. +1 for spotting the answer correctly and +1 for justification. Q2. +3 for filling in the table correctly. Q3. (1) +1 (+0 without justification) (2) +1 (+0 without justification) (3) +3

