(4) a) We use a chinect computation and the chain rule:

$$
\begin{aligned}
\frac{\partial^{2} \phi}{\partial x^{1 a} \partial x^{1 b}} & =\frac{\partial}{\partial x^{1 a}}\left(\frac{\partial x^{k}}{\partial x^{1 b}} \frac{\partial \phi}{\partial x^{k}}\right)=\frac{\partial x^{l}}{\partial x^{1 a}} \frac{\partial}{\partial x^{l}}\left(\frac{\partial x^{k}}{\partial x^{1 b}} \frac{\partial \phi}{\partial x^{k}}\right) \\
& =\frac{\partial x^{l}}{\partial x^{1 a}}\left(\frac{\partial^{2} x^{k}}{\partial x^{l} \partial x^{1 b}}\right) \frac{\partial \phi}{\partial x^{k}}+\frac{\partial x^{l}}{\partial x^{1 a}} \frac{\partial x^{k}}{\partial x^{\prime b}} \frac{\partial^{2} \phi}{\partial x^{l} \partial x^{k}}
\end{aligned}
$$

The second tern on the r.h.s. is the cepemion that we would crepect for the transformation of a $(0,2)$ tensor. However, the first tern is not and hence we conclude that $\frac{\partial^{2} \phi}{\partial x^{a} \partial x^{b}}$ does NOT transform as a $(0,2)$ tensor.
b) Notice that if $V_{a b}=V_{b a}$, then

$$
V_{a b}-V_{b a}=0
$$

Under coordinate transformations,

$$
\begin{aligned}
V_{a b}^{\prime}-V_{b a}^{\prime} & =\frac{\partial x^{c}}{\partial x^{1 a}} \frac{\partial x^{d}}{\partial x^{1 b}} V_{c d}-\frac{\partial x^{e}}{\partial x^{1 b}} \frac{\partial x^{g}}{\partial x^{1 a}} V_{e g} \\
& =\frac{\partial x^{c}}{\partial x^{1 a}} \frac{\partial x^{d}}{\partial x^{1 b}} V_{c d}-\frac{\partial x^{j}}{\partial x^{1 a}} \frac{\partial x^{e}}{\partial x^{1 b}} V_{g e} \\
& =0
\end{aligned}
$$

whir in the second line we have used that $V_{c g}=V_{g e}$ and in the thine line we ened that the inchices (c, d) and (e, f) are dummy indices.
(5) a) We an given

$$
\begin{aligned}
& x^{1}=x=e^{p} \cos \theta \\
& x^{2}=y=e^{p} \sin \theta
\end{aligned}
$$

The inverse relations ane:

$$
\begin{aligned}
& x^{11}=\rho=\frac{1}{2} \ln \left(x^{2}+y^{2}\right) \\
& x^{12}=\theta=\arctan \left(\frac{y}{x}\right)
\end{aligned}
$$

Now we can calculate $\frac{\partial x^{1 a}}{\partial x^{b}}$ and $\frac{\partial x^{a}}{\partial x^{1 b}}$. We find:

$$
\begin{aligned}
& \frac{\partial x^{\prime 1}}{\partial x^{\prime}}=\frac{\partial \rho}{\partial x}=x e^{-2 \rho}=e^{-\rho} \cos \theta, \frac{\partial x^{\prime \prime}}{\partial x^{2}}=\frac{\partial \rho}{\partial y}=y e^{-2 \rho}=e^{-\rho} \sin \theta \\
& \frac{\partial x^{\prime 2}}{\partial x^{\prime}}=\frac{\partial \theta}{\partial x}=-y e^{-2 \rho}=-e^{-\rho} \sin \theta, \frac{\partial x^{\prime 2}}{\partial x^{\prime}}=\frac{\partial \theta}{\partial y}=x e^{-2 \rho}=e^{-\rho} \cos \theta
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \frac{\partial x^{1}}{\partial x^{\prime 1}}=\frac{\partial x}{\partial \rho}=e^{p} \cos \theta=x, \frac{\partial x^{1}}{\partial x^{12}}=\frac{\partial x}{\partial \theta}=-e^{p} \sin \theta=-y \\
& \frac{\partial x^{2}}{\partial x^{\prime 1}}=\frac{\partial y}{\partial \rho}=e^{p} \sin \theta=y, \frac{\partial x^{2}}{\partial x^{2}}=\frac{\partial y}{\partial \theta}=e^{p} \cos \theta=x
\end{aligned}
$$

$$
\begin{aligned}
& \text { (7) } A^{a b}=A^{b a}, B_{a b}=-B_{b a} \\
& \Rightarrow A^{a b} B_{a b}=-A^{a b} B_{b a}=-A^{b a} B_{b a}=-A^{a b} B_{a b}
\end{aligned}
$$

The first equality follows from the antisymmnatry of $B_{a b}$, the second equality follows from the symmetry of $A^{a b}$, and the thing equality follows from the fact that the inches (a, b) one dunnnyy inchices and we can re-label them at om convenience.
Since $A^{a b} B_{a b}=-A^{a b} B_{a b}$ it follows that $A^{a b} B_{a b}=0$
(1) Question: Geometry

- Consider the object $F_{i j}=\partial_{i} A_{j}-\partial_{j} A_{i}$, whee A_{i} is a $(0,1)$ tensor. Compute the transformation of $F_{i j}$ under a change of coonclinates. $x^{a}=x^{a}\left(x^{1 b}\right)$. Is $F_{i j}$ a telson?

Solution:
Since A_{i} is a terror, it transforms as

$$
A_{i}=\frac{\partial x^{i j}}{\partial x^{i}} A_{j}^{\prime}
$$

as for the partial derivatives one has,

$$
\frac{\partial}{\partial x^{i}}=\frac{\partial x^{1 j}}{\partial x^{i}} \frac{\partial}{\partial x^{\prime j}}
$$

Putting those two results together, we get

$$
\begin{aligned}
F_{i j} & =\partial_{i} A_{j}-\partial_{j} A_{i} \\
& =\frac{\partial x^{\prime k}}{\partial x^{i}} \frac{\partial}{\partial x^{k}}\left(\frac{\partial x^{l}}{\partial x^{j}} A_{l}^{\prime}\right)-\frac{\partial x^{\prime p}}{\partial x^{j}} \frac{\partial}{\partial x^{i p}}\left(\frac{\partial x^{1 q}}{\partial x^{i}} A_{q}^{\prime}\right) \\
& =\frac{\partial x^{k}}{\partial x^{i}}\left[\frac{\partial^{2} x^{\prime l}}{\partial \dot{x}^{k} \partial x^{j}} A_{l}^{\prime}+\frac{\partial x^{l e}}{\partial x^{j}} \frac{\partial}{\partial x^{k}} A_{l}^{\prime}\right]
\end{aligned}
$$

$$
-\frac{\partial x^{1 p}}{\partial x^{j}}\left[\frac{\partial^{2} x^{1 q}}{\partial x^{p} \partial x^{i}} A_{q}^{\prime}+\frac{\partial x^{\prime q}}{\partial x^{i}} \frac{\partial}{\partial x^{1 p}} A_{q}^{\prime}\right]
$$

The first terms on each line cancel. To see this, ones realises that they ane equal to

$$
\begin{aligned}
& \frac{\partial x^{\prime k}}{\partial x^{i}} \frac{\partial}{\partial x^{\prime k}}\left(\frac{\partial x^{l}}{\partial x^{j}}\right) A_{l}^{\prime}=\frac{\partial^{2} x^{\prime l}}{\partial x^{i} \partial x^{j}} A_{e}^{\prime} \\
& \frac{\partial x^{\prime p}}{\partial x^{j}} \frac{\partial}{\partial x^{\prime p}}\left(\frac{\partial x^{\prime q}}{\partial x^{i}}\right) A_{q}^{\prime}=\frac{\partial^{2} x^{q}}{\partial x^{j} \partial x^{i}} A_{q}^{\prime}
\end{aligned}
$$

Therefore, one is left with,

$$
\begin{aligned}
F_{i j} & =\frac{\partial x^{\prime k}}{\partial x^{i}} \frac{\partial x^{\prime l}}{\partial x^{j}} \frac{\partial A_{e}^{\prime}}{\partial x^{\prime k}}-\frac{\partial x^{1 p}}{\partial x^{j}} \frac{\partial x^{\prime q}}{\partial x^{i}} \frac{\partial}{\partial x^{\prime p}} A_{q}^{\prime} \\
& =\frac{\partial x^{\prime k}}{\partial x^{i}} \frac{\partial x^{l e}}{\partial x^{j}}\left(\frac{\partial A_{e}^{\prime}}{\partial x^{\prime k}}-\frac{\partial A_{k}^{\prime}}{\partial x^{l e}}\right) \\
& =\frac{\partial x^{\prime k}}{\partial x^{i}} \frac{\partial x^{\prime l}}{\partial x^{j}} F_{e k}^{\prime}
\end{aligned}
$$

Thupfere, $F_{i j}$ transforms as a $(0,2)$ tensor.
(11) b) By the definition of covariant derivative,

$$
\nabla_{i} B_{j k}=\partial_{i} B_{j k}-\Gamma_{i j}^{l} B_{e k}-\Gamma_{i k}^{l} B_{j e}
$$

c) $\nabla_{[i} B_{j k]}=\partial_{[i} B_{j k]}$
sue all the inclices are anti-symmetric while $\Gamma_{i j}^{l} B_{e k}$ and $\Gamma_{i n}^{l} B_{j e}$ are symmetric in the pans of incises $(i j)$ and (ik) respectively.
d) Since $\partial_{[i} B_{j k]}=\nabla_{\tau i} B_{j k]}$ and the RHS is clearly a tensor, so must be the LHS.

