Recap quiz (paraphrased detns/theorems)
Consider on LP in standard equation form
maximise $\underline{c}^{\top} \underline{x}$
subject to $A \underline{x}=\underline{b}, \underline{x} \geqslant 0$.
A basic feasible solution is a \qquad solution x in which the \qquad entries of x correspond to \qquad columns of A.

Last time we proved two results
(1) Every LP (in standard equation form) has an \qquad solution that is on
\qquad solution (provided it has at least one \qquad solution).
(2) Given on LP in stendord equation form every \qquad solution is an
\qquad solution and vice versa. (prot not completed)
(1) +(2) imply

Cordlary If an LP has an optimal solution, then it also has an optimal solution that is also a basic fecesible solution.

Paste
A basic feasible solution is a \qquad solution x in which the \qquad entries of x correspond to \qquad columns of A.

Detn For a basic feasible solution $\underline{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ ct an LP in standard equation farm the basic variables are those x_{i} that are non-zero the non-basic variables are thane x; that are zero.

Summary

- Start with a BFS
- At each step find a BFS with larger objective value by increasing one variable from 0 and decreasing ane variable to 0 .
- Rewrite LP sc it becomes obvious which variable te increase in the next step
- Stop when we see that we cannot increase the objective function my more.

Systematic description of simplex algoritum
Simpler case when $\underline{b} \geqslant 0$.
Assume you are given an $L P$ in standard inequality form maximise ${C^{\top}}^{x} \underline{x}$
subject to $A \underline{x} \leqslant \underline{b} \quad \underline{x} \geqslant \underline{0}$.
Here A is min matrix, $\underline{c} \in \mathbb{R}^{n}, \underline{b} \in \mathbb{R}^{m}, \quad \underline{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right) \in \mathbb{R}^{n}$ (so m constraints, n variables)
(1) Initialisation:

Put in standard equation form by introducing m slate variables $s_{1} \ldots, s_{m}$.
maximise $\underline{c}^{\top} \underline{x}^{\prime}$
subjet to $\quad A^{\prime} \underline{x}^{\prime} \leqslant \underline{b}, \underline{x}^{\prime} \geqslant 0$
$A^{\prime}=(A \mid I) \quad m \times(n+m)$ matrix
$\underline{c}^{\prime \top}=(\underline{c} \mid \underline{O}) \in \mathbb{R}^{n+m}$ land m zeros to $\left.\underline{c}^{\top}\right)$

$$
\underline{x}^{\prime}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n} \\
s_{1} \\
\vdots \\
s_{m}
\end{array}\right) \in \mathbb{R}^{n+m}
$$

Construct initial tableau (see example)

(2) Repeatedly apply pivot steps as Adlaws. consider current fableux

Basic variables appear here

Label rows $R_{1}, R_{2}, \ldots, R_{m}, R$ (just so we con refer to them)
(a) Find largest positive entry in $\underline{c}^{*} T$, say c_{j}^{*}, and highlight $j^{\text {th }}$ column
(b) Look at each entry in hightighted column ie. the entries $A_{r_{j}}^{*} r=1, \ldots, m$ For each $r=1, \ldots, m$ it $A_{r_{j}}^{*} \geqslant 0$ let $z_{r}=b_{r} / A_{r_{j}^{*}}^{*}$ and record this number z_{r} next to $b_{r}{ }^{*}$
Of all z_{r}, pick smallest, say z_{i}, and highigght its row, ie. Ri
Basic variables appear here

(c) We "lear" jut column (i.e. highlighted column) using vow operations

- Replace $i^{\text {th }}$ row R_{i} (i.e. highlighted row) by $R_{i}{ }^{\prime}=R_{i} / A_{i}^{*}$ (so isth entry is now 1)
- Replace every other row R_{r} with $R_{r}^{\prime}=R_{r}-A_{r j}^{*} R_{i}^{\prime} \quad$ (including $R_{\text {final }}$) So all entries in highlighted column become zero except isth.
- Replace highlighted raw variable with highlighted column var able (keeping all cather variables unchanged).
- Nan have our new tableau
(3) Repeat (2) until either
(a) $C^{* T}$ has no positive entries in step $2(a)$.

In this case the optimal sclution is obtained by setting each variable on the far lett to the value on the for right and all other variables to zero The maximum objective value is the negative of the bottom right entry.
(b) There are no positive entries in the highlighted column in step 2(b).
If this happens the $L P$ is unbounded

Important notes

- In each pivot,
the variable at the top of highlighted column is called the entering variable
the variable to left of highlighted raw is called the leaving variable.
- Tie breaking rules.

When picking longest value in a row/smallest value in a column If there is a tie-break, pick the one fortherest lett/ closest to the top.

- How would you summarise this for exam?!
- Roughly what is the reason for steps 2(a) 2(b) 2(c).

Apply simplex to following example
maximise $4 x_{1}+\frac{1}{2} x_{2}$
Sub to

$$
\begin{gathered}
x_{1}+x_{2} \leqslant 3 \\
\frac{1}{2} x_{1}+x_{2} \leqslant 2 \\
\frac{1}{2} x_{1}-x_{2} \leqslant 1 \\
x_{1}, x_{2} \geqslant 0
\end{gathered}
$$

(1) Put in standard equn form
$\max 4 x_{1}+\frac{1}{2} x_{2}$
sub to $x_{1}+x_{2}+s_{1} \quad=3$

$$
\begin{gathered}
\frac{1}{2} x_{1}+x_{2}+s_{2}=2 \\
\frac{1}{2} x_{1}-x_{2}+s_{3}=1 \\
x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \geqslant 0
\end{gathered}
$$

Initial tableaux

	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	
s_{1}	1	1	1	0	0	3
s_{2}	$1 / 2$	1	0	1	0	2
s_{3}	$1 / 2$	-1	0	0	1	1
	4	$1 / 2$	0	0	0	0

Pivot step 2
$2 a, 2 b$

		x_{1}	x_{2}	s_{1}	s_{2}	s_{3}		
	s_{1}	1	1	1	0	0	3	$3 / 1=3$
R_{2}	s_{2}	$1 / 2$	1	0	1	0	2	$2 / 1 / 2=4$
R_{3}	s_{3}	$1 / 2$	-1	0	0	1	1	$1 / 2 / 1=1 / 2$
$R_{\text {Anal }}$		4	$1 / 2$	0	0	0	0	

$2 C$

$$
\begin{array}{cc|ccccc|c}
& x_{1} & x_{2} & s_{1} & s_{2} & s_{3} & \\
\cline { 2 - 7 } & R_{1}^{\prime}=R_{1}-R_{3}^{\prime} & s_{1} & 0 & 3 & 1 & 0 & -2 \\
1 \\
R_{2}^{\prime}=R_{2}-\frac{1}{2} R_{3}^{\prime} & s_{2} & 0 & 2 & 0 & 1 & -1 & 1 \\
R_{3}^{\prime}=R_{3} / 1 / 2 & x_{1} s_{3} & 1 & -2 & 0 & 0 & 2 & 2 \\
R_{\text {final }}^{\prime}=R_{\text {final }}-4 R_{3}^{\prime} & 0 & 17 / 2 & 0 & 0 & -8 & -8
\end{array}
$$

Pivot again with updated table

Apply piuct to updated tableax.

		x_{1}	x_{2}	s_{1}	s_{2}	s_{3}		
	s_{1}	0	3	1	0	-2	1	$1 / 3$
R_{2}	s_{2}	0	2	0	1	-1	1	$1 / 2$
R_{3}	x_{1}	1	-2	0	0	2	2	-
$R_{\text {final }}$		0	$17 / 2$	0	0	-8	-8	

$$
\begin{array}{lc|ccccc|c}
R_{1}^{\prime}=\frac{1}{3} R_{1} & x_{2} & x & 0 & 1 & 1 / 3 & 0 & -2 / 3 \\
\hline R_{2}^{\prime}=R_{2}-2 R_{1}^{\prime} & S_{2} & 0 & 0 & -2 / 3 & 1 / 3 & 1 / 3 & 1 / 3 \\
R_{3}^{\prime}=R_{3}+2 R_{1}^{\prime} & x_{1} & 1 & 0 & 2 / 3 & 0 & 2 / 3 & 8 / 3 \\
\hline R_{\text {final }}^{\prime}=R_{\text {final }}-\frac{17}{2} R_{1}^{\prime} & 0 & 0 & -17 / 6 & 0 & -\frac{7}{3} & -\frac{65}{6}
\end{array}
$$

We do not apply anotzer pivat becanse 3(a) tells us we have found on aptimal solurtion.

Cptimal solution

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right)=\left(\begin{array}{c}
8 / 3 \\
1 / 3 \\
0 \\
2 / 3 \\
0
\end{array}\right)
$$

abj value for
this aptimal sclution is $\frac{-65}{6}$

Example
maximise $2 x_{1}-x_{2}+8 x_{3}$
subject to

$$
2 x_{3} \leq 1
$$

$$
\begin{array}{r}
2 x_{1}-4 x_{2}+6 x_{3} \leqslant 3 \\
-x_{1}+3 x_{2}+4 x_{3} \leqslant 2 \\
x_{1}, x_{2}, x_{3} \geqslant 0
\end{array}
$$

Standard equation form
maximise $2 x_{1}-x_{2}+8 x_{3}$
subject to

$$
\begin{aligned}
& 2 x_{3}+s_{1}=1 \\
& 2 x_{1}-4 x_{2}+6 x_{3}+s_{2}=3 \\
&-x_{1}+3 x_{2}+4 x_{3}+s_{3}=2 \\
& x_{1}, x_{2}, x_{3} \geqslant 0
\end{aligned}
$$

Initial tableau

	x_{1}	x	x_{3}	s_{1}	s_{2}	s_{3}	
s_{1}	0	0	2	1	0	0	1
s_{2}	2	-4	6	0	1	0	3
s_{3}	-1	3	4	0	0	1	2
	2	-1	8	0	0	0	0

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}		
	s_{1}	0	0	2	1	0	0	1

First pirct

Pivct			x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}
$R_{1}^{\prime}=\frac{1}{2} R_{1}$	x_{3}	X_{4}	0	0	1	$1 / 2$	0	0
$R_{2}^{\prime}=R_{2}-3 R_{1}$	s_{2}	2	-4	0	-3	1	0	0
$R_{3}^{\prime}=R_{3}-2 R_{1}$	s_{3}	-1	3	0	-2	0	1	0
$R_{f}^{\prime}=R_{f}-4 R_{1}$		2	-1	0	-4	0	0	-4

		x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	
	x_{3}	0	0	1	$1 / 2$	0	0	$1 / 2$
R_{1}	x_{1}	2	-4	0	-3	1	0	0
R_{2}	s_{2}	0						
R_{3}	s_{3}	-1	3	0	-2	0	1	0
R_{f}		(2)	-1	0	-4	0	0	-4

$2^{\text {nd }}$ pivat

$\quad x_{1}$	x_{1}	x_{3}	s_{1}	s_{2}	s_{3}			
	$R_{1}^{\prime}=R_{1}$	x_{3}	0	0	1	$1 / 2$	0	0
$R_{2}^{\prime}=\frac{1}{2} R_{2}$	x_{1}	1	-2	0	$-3 / 2$	$1 / 2$	0	0
$R_{3}^{\prime}=R_{3}+\frac{1}{2} R_{2}$	s_{3}	0	1	0	$-7 / 2$	$1 / 2$	1	0
$R_{f}^{\prime}=R_{f}-R_{2}$		0	3	0	-1	-1	0	-4

		x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	
a_{1}	x_{3}	0	0	1	$1 / 2$	0	0	$1 / 2$
R_{2}	x_{1}	1	-2	0	$-3 / 2$	$1 / 2$	0	0
R_{3}	$x_{2} s_{13}$	0	1	0	$-1 / 2$	$1 / 2$	1	0
		0	3	0	-1	-1	0	-4

$3^{\text {rd }}$ pivat

$R_{1}^{\prime}=R_{1}$	x_{3}	0	0	1	$1 / 2$	0	0	$1 / 2$
$R_{2}^{\prime}=R_{2}+2 R_{3}$	x_{1}	1	0	0	$-1 / 2$	$3 / 2$	0	0
$R_{3}^{\prime}=R_{3}$	x_{2}	0	1	0	$-7 / 2$	$1 / 2$	1	0
$R_{f}^{\prime}=R_{f}-3 R_{3}$		0	0	0	$19 / 2$	$-5 / 2$	-3	-4

		x_{1}	x_{1}	x_{3}	s_{1}	s_{2}	s_{3}	
R_{1}	s_{1}	x_{33}	0	0	1	$1 / 2$	0	0
R_{2}	x_{1}	1	0	0	$-1 / 2$	$3 / 2$	0	0
R_{3}	x_{2}	0	1	0	$-1 / 2$	$1 / 2$	1	0

	x_{1}	x_{1}	x_{3}	s_{1}	s_{2}	s_{3}		
	$R_{1}^{\prime}=2 R_{1}$	s_{1}	0	0	2	1	0	0
$R_{2}^{\prime}=R_{2}+17 R_{1}$	x_{1}	1	0	17	0	$3 / 2$	0	$17 / 2$
$R_{3}^{\prime}=R_{3}+7 R_{1}$	x_{2}	0	1	7	0	$1 / 2$	1	$7 / 2$
$R_{f}^{\prime}=R_{f}-19 R_{1}$		0	0	-19	0	$-5 / 2$	-3	$-27 / 2$
\uparrow								

all values $\leqslant 0$
so algoritum stops
cptimal soln is $\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ s_{1} \\ s_{2} \\ s_{3}\end{array}\right)=\left(\begin{array}{c}7 / 2 \\ 7 / 2 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right) \quad$ with obj value
cptimal soln to Criginal $L P$ is $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{c}17 / 2 \\ 7 / 2 \\ 0\end{array}\right)$.

