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Residual Sum of Squares

In the simple linear regression model with replications
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ANOVA

Source of variation d.f. S5 MS VR
MS,
Regression 1 55g MS, e
£
58
Residual n-2 55 MS; = bz
n—
’ S51oF MSy0¢
Lack of Fit -2 SS1or =
ack of Fi m LoF MS;or — MSpe
S58pe
Pure Error n—m S5Spg MSg = P
n—m
Total n-1 55¢

Expanded ANOVA table
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Exam Style Question

A chemist studied the concentration of a solution (Y ) over time (x). Fifteen identical solutions
were prepared. The solutions were randomly divided into five sets of three, and the five sets
were measured, respectively after 1, 3, 5, 7, and 9 hours. Without making any plots the
chemist entered the data into R, fitted a simple linear regression model and then carried out a
goodness of fit test. The following is the Analysis of Variance table she produced but with
some figures missing.

Analysis of Variance Table

Response: y
Df Sum Sg Mean Sq F value

b4 1 12.5971
Residuals 13

Lack of fit 2.770

Pure error
Total 14 15.5218

I

(a) Copy and complete the Analysis of Variance Table without using R. \(.‘Q,)l
(b) Carry out two possible F tests, write down the corresponding null hypotheses and Queen Mary
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state your conclusions.



Exam Style Question

ANOVA TABLE:
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Exam Style Question

Possible F tests:




Matrix Approach to Simple Linear Regression

Rewrite the model in Matrix form

Our data consists of n paired observations of the predictor variable X and the response variable
Y, ie. (x1,y1) (Xn, ¥n). We wish to fit the model Y = Sy 4+ 81X + € where E(e) = 0 and
Var(e) = 0. We can write this in matrix formulation as

yi =B+ Bix1 + e

Y2 = Bo+ Bixo+¢€

Yn = Bo + Bixa + €
We can write this as Y = X3 4 €. Where Y is a (n x 1) vectors of observation y;, X is a (n
matrix called the design matrix where the first column is series of 1 and the second column Qo
the set of observations x; and 3 is (2 x 1) vector of the unknown parameters Sy and 3. Queen Mary




Matrix Approach to Simple Linear Regression

Then the n equations can be rewritten

Y=X3+¢

which is called General Linear Model. Now Y and ¢ here are random vectors.
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Matrix Approach to Simple Linear Regression

The assumption about the random errors make us write € ~ N;,(0, o21) that is vector ¢
has n-dimensional normal distribution with

£1 ]‘;(5” 0
) | e E(g2) 0
L(E) — L . - . — . H— 0
En E(en) 0
and the variance-covariance matrix
var(ey)  cov(ey,gs) ... cov(eg,s,)
i cov(ea, 1) var(es ... cov(ese, s,
Var(g) = ! ) ‘ )
cov(en, 1) cOV(En,e2) ... var(en)
gt 0 ... 0
0 o ... 0 op -
= i . . . =g
Do WO
0o 0 ... % Queen Mary
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Matrix Approach to Simple Linear Regression

Remark: All the models we have considered so far can be written in this general
form. The dimensions of the matrix X and of vector 3 depend on the number p of
parameters in the model and respectively they are n x p and p x 1.

In the full SLRM we have p = 2.

@ The null model (p=1): Y, =py+¢efori=1--- nis
equivalent to Y = 1 + & where 1 is an (n x 1) vector of 1'.

e The no-intercept model (p = 1), Y; = pBix; +¢; for
i=1,---,n can be written as in matrix notation with,

X1 B = ()

X2
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Matrix Approach to Simple Linear Regression

e Quadratic regression, (p=3)

Y: = Bo + Bix; + _,6’2)(;2 +e¢gjfori=1,---,n can be written in
matrix notation with

1 xq x12 \

1 x x% Bo

: B= |5
X = B2
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Matrix Approach to Simple Linear Regression

LY
W

Queen Mary

Universiy of London




Matrix Approach to Simple Linear Regression

Expectations and Variances with Vectors and Matrices
Vectors Y and € above are random vectors as their elements are random variables.
Definition: The expected value of a random vector is the vector of the respected

values. Thats is for a random vector

z=(z1, - ,za)"
we write
7 El[z]
Ey =€ |2 = |7
o) |Elz)
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Matrix Approach to Simple Linear Regression

For a random vector z, a constant scalar a, a constant vector b and for matrices of
constants A and B we have
(i) E[az+b] = aE[z] +b
(i) E[Az] = AE|[z]
(i) E[z"B] = E[z]"B

With random vectors, variances and covariances of the random variables z; together form
the dispersion matrix sometimes called the variance-co variance matrix.

var(z;)  cov(zi,z) ... ... cov(zi,zp)
Var(z) =
cov(zp,z1) cov(zp, 22) e var(z,) N
(iv) Var(z) can also be expressed as E[(z — E(z))(z — E(z))"] Qo
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Matrix Approach to Simple Linear Regression

(v) The dispersion matrix is symmetric since cov(z;, zj) =cov(z;, z;)
(vi) if all of the z; are uncorrelated all cov(z;, z;) = 0 and hence the dispersion matrix
is diagonal with the variances.
(vii) if A is a matrix of constants then Var(Az) =A var(z) AT.
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Matrix Approach to Simple Linear Regression

The Multivariate Normal Distribution

A random vector z = (z1, z2, -+ , Z,) has a multivariate normal distribution if its probability
density function (pdf) can be written in the form

flz) = — 1 exp~ G-V )
(2m)2 /det(V)
where,
@ vector y is the mean of the vector z = (z1,- -+ , z,)
@ V is the variance-covariance or dispersion matrix of z = (z1,- -+ , z,)

@ det(V) is the determinant of V

with the multivariate normal distribution we typically use the notation z ~ N,(u, V).
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Least Squares Estimation Using Matrices

Least Square Estimation
For the general linear model the normal equations are given by

Y =X}
XTY =X"X}3
as XT X is invertible, i.e. its determinant is non-zero, the unique solution
to the normal equations is given by

A=(XTx)"xTy
This matrix 3 is a linear combination of the elements of Y. These
estimates are normal if Y is normal. These estimates will be
approximately normal in general.
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Least Squares Estimation Using Matrices
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Least Squares Estimation Using Matrices
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Matrix Approach to Simple Linear Regression
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Least Squares Estimation Using Matrices
The residual sum of square: SSg =Y (Y; — V), dfe =n—p
L ~T
SSe = y'y-B X'y
The regressionl sum of square:SSg = Y (Vi — Y)?, dfr = p— 1

SSk = a‘XfY — ng’

~ ~

E(5), Var(B):

) = (XTX)"1o?

>

E(B)=5  Var(
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Matrix Approach to Simple Linear Regression

Some Specific Models
e The Null Model

As we have seen this can be written as

Y =X3+e
where X = 1 is an (n x 1) vector of 1’s. So XTX = n, XTY = 3" Y;, which gives

B=(XTX)"IXTYy = ZY Y =B

= &
n W

Queen Mary



Matrix Approach to Simple Linear Regression

e No Intercept Model
We sat that this example fits the General Linear Model with

X1
X2

x= %, s-n
Xn

So XTX =" x? and XTY = 3" x;¥; and we can calculate

A_ (xT 1yT ZX:: 3
B = (X XTY) = S50 =

Var(B) = c2(XTX) ™ =

> xF
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Matrix Approach to Simple Linear Regression

e Example

When fitting the model
E[Yi] = By + brz1 + Baxa;

to a set of n = 25 observations, the following results were obtained using the general
linear model notation:

25 219 10232 559.60
X'X=| 219 3055 133809 |. X'V =|[ 7375.44
10232 133890 6725688 337071.69

0.11321519  —0.00444859 —0.000083673

(X'X)™" = | —0.00444859  0.00274378  —0.000047857

—0.00008367 —0.00004786  0.000001229
Also Y'Y = 18310.63 and Y = 22.384.

(a) Find the least squares estimated ,@ and hence write down the fitted model;

(b) Use the results to construct the Analysis of Variance Table (Remember that the
regression sum of squares is 3 XY — nj®)
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Matrix Approach to Simple Linear Regression

Based on the previous results:

(a) Test the null hypothesis that the overall regression is non-significant using a sig-
nificance level of 5%.

(b) Find a 95% confidence interval for 3; with j = 0,1, 2.
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Matrix Approach to Simple Linear Regression
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Matrix Approach to Simple Linear Regression
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Least Squares Estimation Using Matrices

Exams Style Questions (2021):

Question 4 [17 marks].  We have the data for cigarette consumption for 46 US
States for the year 1992 and we are interested in the relationship between the logarithm
of cigarette consumption (in packs) per person of smoking age (> 16 years), the
so-called Y, the logarithm of real price of cigarettes in each state, X;, and the logarithm
of real disposable income (per capita) in each state, X;. Data were collected for the 46
US States and the following computations for a multiple regression analysis of the model

Yi=Bo+ Brxai + Paxai + &

were obtained:

: 30.930 4811 —6.679 223.001
(X'X) "= 4811 3945 —1.177 ], XY= 45428
—6.679 —1.177 1.449 1064.724.

Also Y'Y = 1082.723 and Y = 4.848 were computed.
(a) Find the least squares estimates E and hence write down the fitted model.

(b) Use the results to construct the Analysis of Variance Table.

4]
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Least Squares Estimation Using Matrices

Exams Style Questions (2021):
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Least Squares Estimation Using Matrices

Exams Style Questions (2019)

Question 4. [22 marks]

For the general linear model ¥ = X 3 + £ where e is a vector of errors assumed to be
uncorrelated with zero mean and constant variance o2, the formula for the least squares
estimator B is

B=(X"X)"'XTy
(a) Prove that the expectation of ,B is 3. |4
(b) Derive a formula for the variance-covariance matrix of ﬁ quoting any necessary results. [6]

(¢) Show that the vector of fitted values is given by HY where H is the hat matrix which

you should define. (3]
(d) Show that HH = H. [3]
(e) Express the model
Y; = fo + Bixi + Buat + & i=1,2,..., 5
where the &; have mean zero, variance o2 and are uncorrelated, as a general linear model LQ[
in matrix form by specifying ¥, X, @ and =. (6]
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Least Squares Estimation Using Matrices

Exams Style Questions (2020)

Question 3 [19 marks]. For the general linear model Y = X 3 + e, where € is a vector of
errors assumed to be uncorrelated with zero mean and constant variance o2, the formula for
the least squares estimator 3 is
A=(X"X)'X"Y.
(a) Write the regression model
Y; = Bixi + Bozi + &, i=12....5

where the £; have mean zero, variance o?

in matrix form by specifying ¥, X, 3 and e. [5]

and are uncorrelated, as a general linear model

(b) Find expressions for the least squares estimators of 3; and s,
(i) by minimising

S(B,82) = Z{\’: — (Bhx; + lﬁ‘_};,]}Q.
i=1

(6]
(ii) by using the formula for ,B ahove. [5]
(¢) The variance-covariance matrix of 3 is (X7 X)~'. Find Var(4) and Cov (31, 2). [3]
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Least Squares Estimation Using Matrices

Properties follows from the Matrix Approach

Hat Matrix

The vector of fitted values is given by

Y=X3
— X(XTXX)IXTY
The matrix H = X(XTX)~!XT is callled the hat matrix. Note that
HT =H

and also

HZ=H \a@
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Least Squares Estimation Using Matrices
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