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Residual Sum of Squares



ANOVA



Exam Style Question

A chemist studied the concentration of a solution (Y ) over time (x). Fifteen identical solutions
were prepared. The solutions were randomly divided into five sets of three, and the five sets
were measured, respectively after 1, 3, 5, 7, and 9 hours. Without making any plots the
chemist entered the data into R, fitted a simple linear regression model and then carried out a
goodness of fit test. The following is the Analysis of Variance table she produced but with
some figures missing.



Exam Style Question

ANOVA TABLE:



Exam Style Question

Possible F tests:



Matrix Approach to Simple Linear Regression

Rewrite the model in Matrix form

Our data consists of n paired observations of the predictor variable X and the response variable
Y, i.e. (x1, y1) · · · (xn, yn). We wish to fit the model Y = β0 + β1X + ε where E (ε) = 0 and
Var(ε) = σ2. We can write this in matrix formulation as

y1 = β0 + β1x1 + ε1

y2 = β0 + β1x2 + ε

...

yn = β0 + β1xn + ε

We can write this as Y = Xβ + ε. Where Y is a (n× 1) vectors of observation yi , X is a (n× 2)
matrix called the design matrix where the first column is series of 1 and the second column is
the set of observations xi and β is (2× 1) vector of the unknown parameters β0 and β1.



Matrix Approach to Simple Linear Regression

Then the n equations can be rewritten

Y = Xβ + ε

which is called General Linear Model. Now Y and ε here are random vectors.



Matrix Approach to Simple Linear Regression

The assumption about the random errors make us write ε ∼ Nn(0, σ2I) that is vector ε
has n-dimensional normal distribution with



Matrix Approach to Simple Linear Regression

Remark: All the models we have considered so far can be written in this general
form. The dimensions of the matrix X and of vector β depend on the number p of
parameters in the model and respectively they are n × p and p × 1.
In the full SLRM we have p = 2.
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Matrix Approach to Simple Linear Regression

Expectations and Variances with Vectors and Matrices
Vectors Y and ε above are random vectors as their elements are random variables.
Definition: The expected value of a random vector is the vector of the respected
values. Thats is for a random vector

z = (z1, · · · , zn)T

we write

E (z) = E


z1
z2
...
zn

 =


E [z1]
E [z2]

...
E [zn]





Matrix Approach to Simple Linear Regression

For a random vector z, a constant scalar a, a constant vector b and for matrices of
constants A and B we have

(i) E
[
az + b

]
= aE [z ] + b

(ii) E[Az ] = AE [z ]

(iii) E[zTB] = E [z ]TB

With random vectors, variances and covariances of the random variables zi together form
the dispersion matrix sometimes called the variance-co variance matrix.

Var(z) =


var(z1) cov(z1, z2) . . . . . . cov(z1, zn)

. . .
...

...
...

. . .
...

cov(zn, z1) cov(zn, z2) . . . var(zn)


(iv) Var(z) can also be expressed as E

[
(z − E (z))

(
z − E (z))T

]



Matrix Approach to Simple Linear Regression

(v) The dispersion matrix is symmetric since cov(zi , zj) =cov(zj , zi )
(vi) if all of the zi are uncorrelated all cov(zi , zj) = 0 and hence the dispersion matrix

is diagonal with the variances.
(vii) if A is a matrix of constants then Var(Az) =A var(z) AT .



Matrix Approach to Simple Linear Regression

The Multivariate Normal Distribution

A random vector z = (z1, z2, · · · , zn) has a multivariate normal distribution if its probability
density function (pdf) can be written in the form

f (z) =
1

(2π)
n
2

√
det(V)

exp−
1
2 (z−µ)T V−1(z−µ)

where,

vector µ is the mean of the vector z = (z1, · · · , zn)

V is the variance-covariance or dispersion matrix of z = (z1, · · · , zn)

det(V) is the determinant of V

with the multivariate normal distribution we typically use the notation z ∼ Nn(µ,V).
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Matrix Approach to Simple Linear Regression



Least Squares Estimation Using Matrices

E (β̂) = β̂ Var(β̂) = (XTX)−1σ2



Matrix Approach to Simple Linear Regression

Some Specific Models

The Null Model

As we have seen this can be written as

Y = Xβ̂ + ε

where X = 1 is an (n × 1) vector of 1′s. So XTX = n, XTY =
∑

Yi , which gives

β̂ = (XTX)−1XTY =
1

n

∑
Yi = Y = β̂0

E (β̂) = β̂0

Var(β̂) = (XTX)−1σ2 =
σ2

n



Matrix Approach to Simple Linear Regression

No Intercept Model

We sat that this example fits the General Linear Model with

X =


x1
x2
...
xn

 , β = β1

So XTX =
∑

x2i and XTY =
∑

xiYi and we can calculate

β̂ = (XTX)−1XTY) =

∑
xiYi∑
x2i

= β̂1

Var(β̂) = σ2(XTX)−1 =
σ2∑
x2i
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Least Squares Estimation Using Matrices

Exams Style Questions (2021):
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Exams Style Questions (2021):
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Least Squares Estimation Using Matrices

Properties follows from the Matrix Approach



Least Squares Estimation Using Matrices
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