1. Consider the Hamming metric on Σ^n in the alphabet $\Sigma = \{0, 1, 2\}$. What is the cardinality of the closed ball B[w; 1]?

The ball B[w; 1] contains the word w and all variations of w in a single position. Since there are n positions and each position can be varied by selection a symbol of Σ distinct from the current occupier of the position, we see that the cardinality of the ball B[w; 1] is 2n + 1.

2. Show that two open intervals $(a,b) \subset \mathbb{R}$ and $(a',b') \subset \mathbb{R}$ are isometric if and only if they have the same length, i.e. b-a=b'-a'.

If b-a=b'-a', the map $f:\mathbb{R}\to\mathbb{R}$ given by f(x)=x+(a'-a) is an isometry mapping (a,b) onto (a',b'). Conversely, if the length of the interval (a,b) equals its diameter

$$b - a = \sup\{d(x, y); x, y \in (a, b)\}.$$

This quantity is clearly invariant under isometries, and thus two isometric intervals must have equal length.

- 3. Let $X = \mathbb{R}$ with the standard metric. Which of the following sets are dense in X?
 - (a) The set A of rational numbers shifted by π , i.e. the set of numbers of the form $x = r + \pi$, where $r \in \mathbb{Q}$.

This set A is dense: every open interval (a, b) contains a point of the form $r + \pi$ where $r \in \mathbb{Q}$. This is equivalent to the statement that any open interval $(a - \pi, b - \pi)$ contains a point $r \in \mathbb{Q}$.

(b) The set B of rational multiples of $\sqrt{2}$, i.e. the set of numbers of the form $x = r \cdot \sqrt{2}$ where $r \in \mathbb{Q}$.

This set B is dense. Indeed, $r\sqrt{2} \in (a,b)$ iff $r \in (\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}})$. Since \mathbb{Q} is dense, for any a < b we can find $r \in \mathbb{Q}$ with $r \in (\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}})$.

(c) The set C of rational numbers whose decimal representation does not contain the digit "7".

C is not dense as the open interval (0.7, 0.71) contains no points of C.

4. Let (X, d) be a metric space. Let $Y \subset X$ be a finite subset. Prove that Y is closed. It is enough to show that a single point set $\{a\}$ is closed or that the set $\{a\}^c = \{x \in X; x \neq a\}$ is open. If $b \in \{a\}^c$ then $B(b; d(a, b)) \subset \{a\}^c$, i.e. $\{a\}^c$ is open.

5. Let $(V, ||\cdot||)$ be a normed space. Prove that the set $F = \{x \in V; ||x|| = 1\}$ is closed but not open.

We show that the complement F^c is open. If $a \in F^c$, i.e. $||a|| \neq 1$ then $B(a; r) \subset F^c$ where r = |(1 - ||a||)|. This shows that F is closed.

For $b \in F$, no open ball B(b;r) is contained in F. Indeed, the ball B(b;r) contains the point $(1+\epsilon)b$ for small $\epsilon > 0$ and $||(1+\epsilon)b|| = (1+\epsilon) \neq 1$.

- 6. Which of the following sets viewed with the metric induced from \mathbb{R} are complete:
 - (a) (0,1), Not complete as it is not closed.
 - (b) $(0, \infty)$, Not complete as it is not closed.
 - (c) $[0, \infty)$, Complete as it is closed.
 - (d) $\mathbb{R} \mathbb{Z}$, Not complete as it is not closed.
 - (e) \mathbb{Z} , Complete as it is closed.
 - (f) The Cantor set C, Complete as it is closed.
 - (g) \mathbb{Q} . Not complete as it is not closed.