MTH6127

Course work 3

1. Let (X, d) be a metric space, and let $\sigma : X \times X \to \mathbb{R}$ be the metric on X defined by $\sigma(x, y) = \min\{d(x, y), 1\}$. Compare the open balls $B^d(c; r)$ and $B^{\sigma}(c; r)$ with respect to the metrics d and σ .

The balls $B^d(x;r)$ and $B^{\sigma}(x;r)$ coincide for $r \leq 1$. For r > 1 the ball $B^{\sigma}(x;r)$ equals X.

2. Show that a subset $U \subset X$ is open with respect to the metric d if and only if it is open with respect to σ (defined above).

Open sets are unions of open balls of radius $r \leq 1$. Since the open balls of radius $r \leq 1$ for d and for σ coincide, the families of open sets for d and for σ are also identical.

3. Let (X, d) be a metric space such that for all $x, y \in X$ with $x \neq y$ one has $d(x, y) \geq 1$. Describe in this metric the open balls and open and closed sets.

The open ball B(c; r) of radius r < 1 equals $\{c\}$ - the single point. In this case any subset $U \subset X$ is open and closed.

4. Show that a subset $U \subset \mathbb{R}^m$ is open (closed) with respect to the metric d_p , where $p \in [1, \infty]$, if and only if it is open (closed) with respect to the metric d_{∞} .

We shall use the inequalities

$$d_{\infty}(v,w) \le d_p(v,w) \le m^{\frac{1}{p}} \cdot d_{\infty}(v,w), \quad v,w \in \mathbb{R}^m.$$

Thus,

$$B^{d_p}(c;r) \subset B^{d_\infty}(c;r) \subset B^{d_p}(c;m^{1/p} \cdot r)$$

We want to show that any d_{∞} -open ball is d_p -open and any d_p -open ball is d_{∞} -open. Indeed, if $B = B^{d_{\infty}}(c; r)$ then

$$B = \bigcup_{c' \in B} B^{d_{\infty}}(c'; r - d_{\infty}(c, c'))$$
$$= \bigcup_{c' \in B} B^{d_p}(c'; r - d_{\infty}(c, c'))$$

is d_p -open. Similarly, if $B' = B^{d_p}(c; r)$ then

$$B' = \bigcup_{c' \in B'} B^{d_p}(c'; r - d_p(c, c'))$$

=
$$\bigcup_{c' \in B'} B^{d_{\infty}}(c'; m^{-1/p}(r - d_p(c, c')))$$

and we see that B' is d_{∞} -open.

5. For any p > 0 we may define a function $|| \cdot ||_p : \mathbb{R}^m \to \mathbb{R}$ by the usual formula

$$||v||_p = \left[\sum_{i=1}^m |x_i|^p\right]^{1/p}, \quad v = (x_1, x_2, \dots, x_m)$$

Show that this function does not satisfy the triangle inequality for $p \in (0,1)$ if m > 1.

Let $e_i \in \mathbb{R}^m$ denote the vector having only one nonzero coordinate 1 on position i. Then $||e_i||_p = 1$ and $||e_i + e_j||_p = 2^{1/p}$. We see that the inequality $||e_i + e_j||_p \leq ||e_i||_p + ||e_j||_p$ is satisfied only for $p \geq 1$.

6. Let d(x, y) = |x - y| be the standard metric on the real line \mathbb{R} and let $\sigma(x, y) = \min\{d(x, y), 1\}$ as above. Consider the set \mathbb{R}^{ω} of all infinite sequences $\mathbf{x} = (x_n)$ of real numbers $x_n \in \mathbb{R}$, where $n = 1, 2, \ldots$ For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{\omega}$, where $\mathbf{x} = (x_n), \mathbf{y} = (y_n)$, define

$$D(\mathbf{x}, \mathbf{y}) = \sup_{n \ge 1} \left\{ \frac{\sigma(x_n, y_n)}{n} \right\}.$$

Show that D is well-defined and is a metric on \mathbb{R}^{ω} .

Clearly, $\sigma(x_n, y_n) \leq 1$ and $\frac{\sigma(x_n, y_n)}{n} \leq 1/n$; therefore the supremum above is finite and $D(\mathbf{x}, \mathbf{y}) \in [0, 1]$. (M1) and (M2) are obvious. To show (M3) we note that $\sigma(x_n, y_n) \leq \sigma(x_n, z_n) + \sigma(z_n, y_n)$, and $\frac{\sigma(x_n, y_n)}{n} \leq \frac{\sigma(x_n, z_n)}{n} + \frac{\sigma(z_n, y_n)}{n}$, and taking the supremum of both sides of the last inequality, $D(\mathbf{x}, \mathbf{y}) \leq D(\mathbf{x}, \mathbf{z}) + D(\mathbf{z}, \mathbf{y})$.