1. Let (X, d) be a metric space, and let $\sigma: X \times X \rightarrow \mathbb{R}$ be the metric on X defined by $\sigma(x, y)=\min \{d(x, y), 1\}$. Compare the open balls $B^{d}(c ; r)$ and $B^{\sigma}(c ; r)$ with respect to the metrics d and σ.

The balls $B^{d}(x ; r)$ and $B^{\sigma}(x ; r)$ coincide for $r \leq 1$. For $r>1$ the ball $B^{\sigma}(x ; r)$ equals X.
2. Show that a subset $U \subset X$ is open with respect to the metric d if and only if it is open with respect to σ (defined above).

Open sets are unions of open balls of radius $r \leq 1$. Since the open balls of radius $r \leq 1$ for d and for σ coincide, the families of open sets for d and for σ are also identical.
3. Let (X, d) be a metric space such that for all $x, y \in X$ with $x \neq y$ one has $d(x, y) \geq 1$. Describe in this metric the open balls and open and closed sets.

The open ball $B(c ; r)$ of radius $r<1$ equals $\{c\}$ - the single point. In this case any subset $U \subset X$ is open and closed.
4. Show that a subset $U \subset \mathbb{R}^{m}$ is open (closed) with respect to the metric d_{p}, where $p \in[1, \infty]$, if and only if it is open (closed) with respect to the metric d_{∞}.

We shall use the inequalities

$$
d_{\infty}(v, w) \leq d_{p}(v, w) \leq m^{\frac{1}{p}} \cdot d_{\infty}(v, w), \quad v, w \in \mathbb{R}^{m}
$$

Thus,

$$
B^{d_{p}}(c ; r) \subset B^{d_{\infty}}(c ; r) \subset B^{d_{p}}\left(c ; m^{1 / p} \cdot r\right) .
$$

We want to show that any d_{∞}-open ball is d_{p}-open and any d_{p}-open ball is d_{∞}-open. Indeed, if $B=B^{d_{\infty}}(c ; r)$ then

$$
\begin{aligned}
B & =\bigcup_{c^{\prime} \in B} B^{d_{\infty}}\left(c^{\prime} ; r-d_{\infty}\left(c, c^{\prime}\right)\right) \\
& =\bigcup_{c^{\prime} \in B} B^{d_{p}}\left(c^{\prime} ; r-d_{\infty}\left(c, c^{\prime}\right)\right)
\end{aligned}
$$

is $d_{p^{-}}$-open. Similarly, if $B^{\prime}=B^{d_{p}}(c ; r)$ then

$$
\begin{aligned}
B^{\prime} & =\bigcup_{c^{\prime} \in B^{\prime}} B^{d_{p}}\left(c^{\prime} ; r-d_{p}\left(c, c^{\prime}\right)\right) \\
& =\bigcup_{c^{\prime} \in B^{\prime}} B^{d_{\infty}}\left(c^{\prime} ; m^{-1 / p}\left(r-d_{p}\left(c, c^{\prime}\right)\right)\right)
\end{aligned}
$$

and we see that B^{\prime} is d_{∞}-open.
5. For any $p>0$ we may define a function $\|\cdot\|_{p}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ by the usual formula

$$
\|v\|_{p}=\left[\sum_{i=1}^{m}\left|x_{i}\right|^{p}\right]^{1 / p}, \quad v=\left(x_{1}, x_{2}, \ldots, x_{m}\right)
$$

Show that this function does not satisfy the triangle inequality for $p \in(0,1)$ if $m>1$.

Let $e_{i} \in \mathbb{R}^{m}$ denote the vector having only one nonzero coordinate 1 on position i. Then $\left\|e_{i}\right\|_{p}=1$ and $\left\|e_{i}+e_{j}\right\|_{p}=2^{1 / p}$. We see that the inequality $\left\|e_{i}+e_{j}\right\|_{p} \leq$ $\left\|e_{i}\right\|_{p}+\left\|e_{j}\right\|_{p}$ is satisfied only for $p \geq 1$.
6. Let $d(x, y)=|x-y|$ be the standard metric on the real line \mathbb{R} and let $\sigma(x, y)=$ $\min \{d(x, y), 1\}$ as above. Consider the set \mathbb{R}^{ω} of all infinite sequences $\mathbf{x}=\left(x_{n}\right)$ of real numbers $x_{n} \in \mathbb{R}$, where $n=1,2, \ldots$. For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{\omega}$, where $\mathbf{x}=\left(x_{n}\right), \mathbf{y}=\left(y_{n}\right)$, define

$$
D(\mathbf{x}, \mathbf{y})=\sup _{n \geq 1}\left\{\frac{\sigma\left(x_{n}, y_{n}\right)}{n}\right\} .
$$

Show that D is well-defined and is a metric on \mathbb{R}^{ω}.
Clearly, $\sigma\left(x_{n}, y_{n}\right) \leq 1$ and $\frac{\sigma\left(x_{n}, y_{n}\right)}{n} \leq 1 / n$; therefore the supremum above is finite and $D(\mathbf{x}, \mathbf{y}) \in[0,1]$. (M1) and (M2) are obvious. To show (M3) we note that $\sigma\left(x_{n}, y_{n}\right) \leq \sigma\left(x_{n}, z_{n}\right)+\sigma\left(z_{n}, y_{n}\right)$, and $\frac{\sigma\left(x_{n}, y_{n}\right)}{n} \leq \frac{\sigma\left(x_{n}, z_{n}\right)}{n}+\frac{\sigma\left(z_{n}, y_{n}\right)}{n}$, and taking the supremum of both sides of the last inequality, $D(\mathbf{x}, \mathbf{y}) \leq D(\mathbf{x}, \mathbf{z})+D(\mathbf{z}, \mathbf{y})$.

