Wers
Lost Friday, we strted Chapter 4.
Def A stoup is a set G with an gerention $*$ on G Satistying tu followig condtives.
$(G O)$ If $a, b \in G_{1}$

$$
a * b \in G
$$

$(G 1)$ If $a, b, c \in G$

$$
a * \underbrace{(b * C)}_{\sim_{G}}=\underbrace{(a)}_{\substack{\hat{G} \\(a * b) \\\left(G_{0}\right)}} * C
$$

(G2) There is an element e in G (called th identity dement) Sit. $a * e=e * a=a \quad \forall a$
$(G, 3)$ For every dement a is G_{1} then exists b in G
\&.t. $\quad a * b=b * a=e$
This b is called te inverse ta
It involves specify

$$
\begin{aligned}
& a \text { set } G \\
& \& \quad *
\end{aligned}
$$

If $(G, *)$ is a stand \& furthermore satistus

He condition
(G4) $a, b \in G_{1}$

$$
a * b=b^{*} a
$$

ten we call it an abelian group.
(Q, t) is a stowip
delian
$(\mathbb{Q}-\{0\}, x)$ is a growip
(Q, X) is NoI a a groip
obelin
$\left(\mathbb{Z}_{1}+\right)$ is a graup. unelian

- itantify element 0 Checuse $a+0=0+a$

$$
=a 1
$$

- He invere if a in \mathbb{Z}

$$
\begin{gathered}
\text { (-a) } \\
a+(-a)=(-a)+a=0
\end{gathered}
$$

(\mathbb{Z}, x) is mat a groan identity element 1

$$
a \cdot 1=1 \cdot a=a
$$

For example, there is no $b \in \mathbb{Z}$

$$
\text { st. } 2 \cdot b=b \cdot 2=1
$$

(\& He roots

$$
\text { cots } \left.\left.x^{n}-1 \text { in } \mathbb{1}\right\}, x\right)
$$

We know every rout id $x^{n}-1$

$$
\text { in } \mathbb{C}
$$

is if to form $e^{2 \pi a / n}$
for some $a \in \mathbb{Z}$
Using Proposition 1,

$$
\begin{aligned}
a=n \cdot q & +r \\
0 & \leq r<n .
\end{aligned}
$$

So $e^{2 \pi i y_{n}}=e^{2 \pi i r / n}$

$$
\begin{gathered}
e^{2 \pi i(n q+r) / n}\left(e^{2 \pi i)^{q}} \cdot e^{2 \pi i r / n}\right. \\
11 \cdot e^{2 \pi i r / n} \\
\left\{\begin{array}{l}
\text { He rauts ch } \\
\left.x^{n}-1 \text { in } c^{n}\right) \\
=\left\{e^{2 \pi i 1 / n}, e^{2 \pi i i / n}, \cdots, e^{2 \pi i(n-1) / n}\right\} \\
e^{2 \pi i r / n} \cdot e^{2 \pi i s / n}
\end{array}\right\} e^{2 \pi i(1+s) / n}
\end{gathered}
$$

OTUH,

$$
\begin{aligned}
& \left(\left\{\begin{array}{l}
\text { toruls it } \\
x^{n}-1 \\
\text { in }
\end{array}\right\}, t\right) \\
& \text { is NIT a growp! }
\end{aligned}
$$

Infact! (GO) dors noI hod!! For ermple, if $n=2$,

$$
\begin{aligned}
& (\{ \pm 1\},+) \\
& (-1)+(-1) \text { is }-2
\end{aligned}
$$

but this is NOT a root

$$
\text { of } x^{2}-1!
$$ in \mathbb{R} with

$$
\begin{aligned}
& \text { with } \\
& \text { determine } \neq 03, X)
\end{aligned}
$$

is a stow but not abelian
ie.

$$
A B \neq B A)
$$

Ho identity element: $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

He innere of $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$

$$
\begin{aligned}
& a, b, c, d \in \mathbb{R} \\
& \operatorname{det} A=a d-b c \neq 0 \\
& \text { is } \frac{1}{\operatorname{det} A}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \\
& \text { "! } A^{-1}
\end{aligned}
$$

$(\mathbb{Z} n, t)$ is a atblion gtoup te set ir efriviv clasis on \mathbb{Z}

$$
\begin{gathered}
\text { witit. } \equiv \text { mod } n \\
\text { - He-idatity element }=[0] \\
\text { becanse } \\
{[a]+[0]=[0]+[a]} \\
11 \text { by detinition } \\
{[a+0\rceil} \\
{[a]}
\end{gathered}
$$

- He inverse if [a] is $[-a]$
heculve

$$
\begin{aligned}
{[a]+[-a] } & =[-a]+[a] \\
& =[0]
\end{aligned}
$$

by ceffintion.
$\left(\mathbb{Z}_{n}, x\right)$

- He ideurity element

$$
\begin{equation*}
[a][1]=[1][a]=[a\rceil \tag{1}
\end{equation*}
$$

- Can [a] alwars have
$[b] \in \mathbb{Z}_{n}$ sit

Recall Theorem 12 widh sals that [G] has (mantiplection) inclad
\Leftrightarrow

$$
\operatorname{xd}(a, n)=1
$$

In otler wards, of all te elements

$$
\text { in } \mathbb{Z}_{n} \text {, }
$$

only [a]s sit. ged $(a, n)=1$
phas (G3)

$$
\begin{aligned}
& \text { So }\left(\mathbb{Z}_{n}, X\right) \text { is NJT a strup } \\
& \left.\left(\left\{[a] \text { in } \mathbb{Z n}_{n} \mid \text { seda, } n\right)=1\right\}, X\right)
\end{aligned}
$$

is a gtowip.

How about
$(\mathbb{R}, *)$
noreen * is defined as $a, b \in \mathbb{R}$

$$
a * b=a^{2} b \text { ? }
$$

Is this a stoup?

(4)

$$
\begin{aligned}
& \text { dos NoT hold } \\
& a *(b * c)=a *\left(b^{2} c\right) \\
&=a^{2} b^{2} c \\
&(a * b) * c=\left(a^{2} b\right) * c \\
&=a^{4} b^{2} c
\end{aligned}
$$

(12) does not hold liter!! Look at typed up notes for why.

$$
\left(\mathbb{Z}_{20}, *\right)
$$

1 the set of positive intreges

$$
\begin{aligned}
& \forall a, b \in \mathbb{Z}_{\geq 1} \\
& a * b=|a-b|
\end{aligned}
$$

Is this a group?
(G1) dos NII hod!

$$
\begin{aligned}
1 *(2 * 5) & =1 * 3 \\
& =2
\end{aligned}
$$

$$
\begin{aligned}
(1 * 2) * 5 & =1 * 5 \\
& =4
\end{aligned}
$$

S0 this fails (GI) ,

Let $\$$ be a rou-empty set
Sym (\$) be tho set of bijective fuctions'

$$
a: S \rightarrow S
$$

(bijective $=$ injective s.tes $a(s)=a(t)$ $\&$
sunjective if $\$ \in S$, the exiss $t \in S$

$$
\$ t . f(t)=\$)
$$

* is composition:

$$
\begin{aligned}
& a, b \in \operatorname{Sgm}(S) \\
& a \cdot b: S \rightarrow S \\
& \text { Sending } S \in S \text { to } a(b(t))
\end{aligned}
$$

In other wares, it is te composition

$$
\begin{aligned}
& \underset{y}{S} \xrightarrow{b} S \xrightarrow{a} S \\
& \stackrel{\rightharpoonup}{t} \longmapsto \stackrel{L}{b}(t) \longmapsto a(b(t))
\end{aligned}
$$

Chim $\left(G_{1} *\right)$

$$
(\operatorname{sym}(\$), 0)
$$

§ a group.
(not doelian).
(GO) If $a, b \in \operatorname{Sym}(\$)$,
ten $a \cdot b \in$ Syml $(\$)$
i.e. is $a \& b$ are bijective
then so is aob.
Is a.b injective?
To do thiss. suppose we have

$$
\begin{aligned}
(a \circ b)(s) & =(a \circ b)(t) \\
& (\& \text { aim at } s=t)
\end{aligned}
$$

By definitian, we have

$$
a(b(s))=a(b(t))
$$

Sine a is injective.

$$
b(s)=b(t)
$$

Sine b is infective,

$$
s=t
$$

Is arb surfactiv?
To do this, let s be an element

$$
\text { in } S
$$

Is aim at showing that

$$
\begin{aligned}
& \text { thew is } s^{\prime \prime} \in S \text { sit. } \\
& s=(a \cdot b)\left(s^{\prime \prime \prime}\right)
\end{aligned}
$$

$$
=a\left(b\left(s^{\prime \prime \prime}\right)\right)
$$

Since a is subjective, there exists $s^{\prime} \in S$ sit. $a\left(s^{\prime}\right)$

Sine b is surjective. Heme exists $\$^{\prime \prime} \in S$ st.

$$
b\left(s^{\prime \prime}\right)=\{
$$

This $\$^{\prime \prime}$ is wat we are cookie for.

Inceed

$$
\begin{aligned}
& \left(a_{0} b\right)\left(s^{\prime \prime}\right) \\
= & a\left(b\left(s^{\prime \prime}\right)\right) \\
= & a\left(s^{\prime}\right) \\
= & s .
\end{aligned}
$$

(G)

$$
\begin{gathered}
a_{1} b_{1} c \in \operatorname{Sam}(S) \\
a_{0} \cdot(b \cdot c)=(a \cdot b) \circ c
\end{gathered}
$$

$$
\begin{aligned}
& {\left[a_{0}(b \cdot c)\right](s) } \\
= & {\left[a_{0} d\right)(s) } \\
= & a(d(s)) \\
= & a((b \circ c)(s)) \\
= & a(b(c(s))) \\
= & \left.\left(a_{0} b\right)(c \mid s)\right)
\end{aligned}
$$

$$
=[(a, b) \circ c](\$)
$$

(G2) The identity element in

$$
\operatorname{Sym}(s)
$$

is He identity function id: $s \rightarrow-1$?
Lendings $s \in S$ to s
itself
I weed to check

$$
a_{0} i d=i d \cdot a=a
$$

For exayle

$$
\begin{aligned}
& \left(a_{0} i d\right)(s) \\
= & a(i d(s)) \\
= & a(s)
\end{aligned}
$$

similaly $(i d \circ a)(s)$

$$
\begin{aligned}
& =i d(a(\xi)) \\
& =a(s) .
\end{aligned}
$$

$(G B)$ Lak at motcs.

This example formaliss unat we previcusly discussed
as "Syommatites of an equilaterich triglen

In the sense that

$$
\begin{aligned}
& S=\{\text { to vartios } \\
& \left.A_{B} \quad A_{1} B_{i} C\right\}
\end{aligned}
$$

\& Sym (s) was described completely in terms if reflections \& rotations.

It's passe to look at

$$
S i=\text { vertices of }
$$ a tettaherion etc

Prop 14 (Elementry propertites let $(G, *)$ ben grop of a graw)

- The idenrity element in G is unighe. (m) $\left(G_{2}\right)$)
- Eadr element if G has annque inverse. $(\omega)\left(G_{3}\right)$
- If $a * b=a * c_{1}$
then $b=c$
- The inverse of $(a * b)$

$$
\begin{aligned}
& \text { is } b^{-1} * a^{-1} \\
& \uparrow \hat{c}_{\text {to innkes }} \\
& \text { to imwere of } b \text { ita. }
\end{aligned}
$$

Lal's pove the first-stitiment
suppose we have

$$
e \& e^{\prime}
$$

satisfying
(\mathbb{A})

$$
\begin{aligned}
& e^{*} a=a * e=a \quad{ }^{*} a \\
& e^{\prime} * a=a * e^{\prime}=a \quad \forall a
\end{aligned}
$$

(GOAC) $e=e^{\prime}$
Letting $a=e^{\prime}$ in the finst)

$$
e * e^{\prime}=e^{\prime}
$$

Lettiig $a=e$ in te decand.

$$
e * e^{\prime}=e
$$

combanig tare two we get

$$
c=e^{\prime}
$$

