
MTH6158 Ring Theory: Guide to Coursework 1

Note: This guide is meant to help you understand and carry out the problem
solutions on your own. It is not meant to provide complete solutions!

1. For each of the following algebraic structures, determine which of the axioms
of a field they satisfy. Briefly explain your answers.

(a) The set R of real numbers, with addition a ⊕ b := min(a, b) and multi-
plication a◦· b := a+ b.

This structure satisfies all the axioms of a field except for the zero law
(A2) and the negation law (A3) (this last one does not even make sense,
because there is no zero).

In this structure, the (multiplicative) identity is the number 0. The
multiplicative inverse of any number a is the number −a.

Make sure you understand why all these statements are true!

(b) The collection P(Z) of subsets of Z, with addition A ⊕ B := A∆B
(symmetric difference) and multiplication A◦·B := A ∩B.

This structure satisfies all the axioms of a commutative ring with iden-
tity, but it is not a field (it does not satisfy axiom (M3) about the
existence of multiplicative inverses).

Axioms like associativity of addition (A1) or distributivity (D) can be
argued by showing an equality between two Venn diagrams. The zero
element is the empty set ∅. The additive inverse of any element A is A
itself. The (multiplicative) identity is the whole set Z.

2. Suppose R is a ring in which a2 = a for all a ∈ R. (Such a ring is called a
Boolean ring.) By considering elements of the form (x+ y)2, show that

(a) a+ a = 0 for all a ∈ R.

Suppose a ∈ R. Since the square of any element is equal to itself,
we have (a + a)2 = a + a. Expand this equation out carefully, using
distributivity, and then use the cancellation law.

(b) R is a commutative ring.

Suppose a, b ∈ R. As the square of any element is equal to itself, we
have (a+ b)2 = a+ b. Again, expand this out and use the cancellation
law to conclude that a · b = b · a.



3. For each of the following rings R and subsets S ⊆ R, either prove that S is
a subring of R or provide a counterexample to show that S is not a subring
of R.

(a) R = R, and S = {a+ b
√
3 : a, b ∈ Z}.

The subset S is a subring of R. To prove this, let’s use the subring test:

(S0) The subset S is nonempty, because, for example, it contains the
real number 0 = 0 + 0

√
3.

Now, let’s take any two elements s1, s2 ∈ S. By definition, they must
have the form s1 = a1+b1

√
3 and s2 = a2+b2

√
3, with a1, a2, b1, b2 ∈ Z.

(S1) Their difference is

s1 − s2 = (a1 + b1
√
3)− (a2 + b2

√
3) = (a1 − a2) + (b1 − b2)

√
3.

Since both a1−a2 and b1−b2 are integers, this last expression for s1−s2
shows that it is an element of S.

(S2) Their product is

s1s2 = (a1 + b1
√
3)(a2 + b2

√
3) = (a1a2 + 3b1b2) + (a1b2 + a2b1)

√
3.

Both a1a2 + 3b1b2 and a1b2 + a2b1 are integers, so this expression for
s1s2 shows that it is an element of S.

By the subring test, we therefore conclude that S is a subring of R.

(b) R = M2×2(R), and S = {A ∈ R : A is symmetric}.
The subset S is not a subring of R, as it is not closed under multiplica-
tion. You should be able to construct a concrete counterexample with
two symmetric matrices whose product is not symmetric.

4. Consider the ring R = P({a, b, c, d}), with addition equal to symmetric differ-
ence and multiplication equal to intersection, and its subring S = P({a, b}) ⊆
R.

(a) Are R and S rings with identity? If so, write down their identity ele-
ments explicitly.

Both R and S are rings with identity. The identity element of R is the
whole set {a, b, c, d}. However, this is not the identity of S! Instead,
the identity of S is the set {a, b}. This is an example where a subring
S has a different multiplicative identity than the ring R where it lives.
In the lectures we showed that this phenomenon cannot happen for the
additive identity — make sure you understand why the proof we gave
there does not apply in the multiplicative case.

(b) How many cosets of S in R are there? List them all explicitly.



Since R has 16 elements and S has 4 elements, there are 16
4
= 4 cosets

of S in R. Explicitly, the 4 cosets are:

{ ∅ , {a} , {b} , {a, b} }
{ {c} , {a, c} , {b, c} , {a, b, c} }
{ {d} , {a, d} , {b, d} , {a, b, d} }

{ {c, d} , {a, c, d} , {b, c, d} , {a, b, c, d} }

Make sure you understand well why this is the case!

5. Consider the ring R = P({a, b}), with addition equal to symmetric difference
and multiplication equal to intersection. Let M2×2(R) be the ring of 2 × 2
matrices with entries in R.

(a) How many elements does R have? How many elements does M2×2(R)
have?

The ring R has 4 elements. There are thus 4 possibilities for every entry
of a matrix in M2×2(R), which means there are a total of 44 = 256
elements in M2×2(R).

(b) Is M2×2(R) a ring with identity? If so, write down the identity element
explicitly.

Just like matrices with real entries, the ring M2×2(R) is a ring with
identity. Taking into account that the zero element of R is ∅, and the
identity of R is {a, b}, one can check that the identity of M2×2(R) is
equal to

I =

(
{a, b} ∅
∅ {a, b}

)
.

(c) Is M2×2(R) a commutative ring? Justify your answer.

Just like matrices with real entries, the ring M2×2(R) is not commuta-
tive. For example(

∅ {a, b}
∅ ∅

)
·
(

∅ ∅
{a, b} ∅

)
=

(
{a, b} ∅
∅ ∅

)
,

but (
∅ ∅

{a, b} ∅

)
·
(
∅ {a, b}
∅ ∅

)
=

(
∅ ∅
∅ {a, b}

)
.

(d) Is M2×2(R) a division ring? Justify your answer.

Just like matrices with real entries, the ring M2×2(R) is not a division
ring, as not every matrix is invertible. For instance, check that the

element

(
∅ ∅
∅ {a, b}

)
has no (right) multiplicative inverse, meaning that

the following equation has no solution:(
∅ ∅
∅ {a, b}

)
·
(
? ?
? ?

)
=

(
{a, b} ∅
∅ {a, b}

)
.



6. Consider the ring R = M2×2(R), and its subset

S =

{(
a b
−b a

)
: a, b ∈ R

}
⊆ R.

(a) Show that S is a subring of R.

You can use the subring test. First, show that S is nonempty by giving
an example of a matrix in S. Then, take two arbitrary matrices in S,
compute their difference, and check that it is a matrix in S. Lastly,
take two matrices in S, compute their product, and check that it is a
matrix in S.

(b) Prove that S is isomorphic to the field C of complex numbers.

We must show that S is basically the same ring as C, but with dif-
ferent names for its elements. This can be done by giving an explicit
relabelling, or isomorphism. Take θ : S → C defined as

θ

((
a b
−b a

))
= a+ bi.

You should prove that θ is injective, surjective, and a homomorphism.
None of this is too difficult! This isomorphism provides what is often
called the “matrix representation” of complex numbers.


