WEEK 5

Last lecture:
Vectors:

- Directional derivatives along unves: $\frac{d}{d \lambda}$
- Geometric objects intrinsic to M and independent of the choice of coordinates
- In a coordinate basis: $V=V^{a} \partial_{a}$
- Under coordinate transf. $x^{a^{\prime}}=x^{a^{\prime}}\left(x^{b}\right)$

$$
V^{a^{\prime}}=\frac{\partial x^{a^{\prime}}}{\partial x^{b}} V^{b}
$$

Tensors: 1- forms
Having effined vectors, we can now consider dual vectors (aka 1-forms). Thy live on the cotangent space T_{p}^{*}, which can be thought of the space of linear maps $\omega: T_{p} \rightarrow \mathbb{R}$ $\rightarrow g_{n}$ dicots of functions and thy act on vectors:

$$
d f\left(\frac{d}{d \lambda}\right)=\frac{d f}{d \lambda} \in \mathbb{R}
$$

\rightarrow like vectors, one-forms are defined at a point

- A national basis for the 1-forms are the gaclients of the coordinates $x^{a}:\left\{d x^{a}\right\}$ Recall, given some basis vectors $\hat{e}_{(a)}$ of T_{p}, we can construct a basis for T_{p}^{*} demanding $\hat{\theta}^{(a)}\left(\hat{e}_{(b)}\right)=\delta^{a} b$
Then for a coordinate basis we have $d x^{a}\left(\partial_{b}\right)=\frac{\partial x^{a}}{\partial x^{b}}=\delta_{b}^{a}$
$\Rightarrow\left\{d x^{a}\right\}$ form a basis of $T_{p}^{*}(1-$ forms $)$ and hence we can write an arbitrawy 1-form as

$$
\omega=\omega_{a} d x^{a}
$$

- The transformation rules for 1-forms under changes of coondinatios are
basin: $\quad d x^{a}=\frac{\partial x^{a}}{\partial x^{b}} d x^{b}$ components: $\omega_{a^{\prime}}=\frac{\partial x^{a}}{\partial x^{\prime}} \omega_{a}$

Tensors of arbitrary rank (k, l)

- a (k, l) tensor is a multilinear map from K dual vectors and ℓ vectors to \mathbb{R}
- The components in a coondimate basis are found by acting on the bess one-forms and vatons:

$$
\begin{aligned}
& T^{a_{1} \ldots a_{k}} b_{1} \ldots b_{c}=T\left(d x^{a_{1}}, \ldots, d x^{a_{k}}, \partial_{b_{1}}, \ldots \partial_{b_{l}}\right) \\
\Rightarrow \quad & T=T^{a_{1} \ldots a_{k}} b_{1} \ldots b_{c} \quad \partial_{a_{1}} \otimes \otimes \partial_{a_{k}} \otimes d x^{b_{1}} \otimes \otimes d x^{b_{l}}
\end{aligned}
$$

Transformation rule:

$$
T^{a_{1}^{\prime} \ldots a_{k}^{\prime}} b_{1} \ldots b_{c}^{\prime}=\frac{\partial x_{i}^{a_{1}}}{\partial x^{a_{1}}} \cdots \frac{\partial x^{a_{k}^{\prime}}}{\partial x^{a_{k}}} \frac{\partial x^{b_{1}}}{\partial x_{1}^{b_{1}^{\prime}}} \cdots \frac{\partial x^{b_{c}}}{\partial x_{i}^{b_{i}^{\prime}}} T^{a_{1} \cdots a_{k}} b_{1} \cdots b_{e}
$$

- Example : $\quad S_{a b}=\left(\begin{array}{cc}1 & 0 \\ 0 & x^{2}\end{array}\right) \quad\left(x^{\wedge}=x, x^{2}=y\right)$

$$
\rightarrow \quad S=S_{a b} d x^{a} \otimes d x^{b}=d x \otimes d x+x^{2} d y \otimes d y
$$

Coond ingate trans: $x^{\prime}=\frac{2 x}{y}, y^{\prime}=\frac{y}{2}$
Invase: $x=x^{\prime} y^{\prime}, y=2 y^{\prime}$
Components of S in the now coordinates:

$$
\left.\begin{array}{rl}
S_{a^{\prime} b^{\prime}}= & \frac{\partial x^{a}}{\partial x^{\prime}} \frac{\partial x^{b}}{\partial x^{b^{\prime}}} S_{a b} \\
S_{x^{\prime} x^{\prime}}= & \left(\frac{\partial x}{\partial x^{\prime}}\right)^{2} S_{x x}+\frac{\partial x}{\partial x^{\prime}} \frac{\partial y}{\partial x^{\prime}}\left(S_{x y}+S_{y x}\right)+\left(\frac{\partial y}{\partial x^{\prime}}\right)^{2} S_{y y} \\
= & \left(y^{\prime}\right)^{2}+0+0=\left(y^{\prime}\right)^{2} \\
S_{x^{\prime} y^{\prime}}= & \frac{\partial x}{\partial x^{\prime}} \frac{\partial x}{\partial y^{\prime}} S_{x x}+\frac{\partial x}{\partial x^{\prime}} \frac{\partial y}{\partial y^{\prime}} S_{x y}+\frac{\partial y}{\partial x^{\prime}} \frac{\partial x}{\partial y^{\prime}} S_{y x} \\
& +\frac{\partial y}{\partial x^{\prime}} \frac{\partial y}{\partial y^{\prime}} S_{y y} \\
= & y^{\prime} x^{\prime}+0+0=x^{\prime} y^{\prime} \\
S_{y^{\prime} x^{\prime}}= & S_{x^{\prime} y^{\prime}} \text { since } S_{a b}=S_{b a} \\
S_{y^{\prime} y^{\prime}}= & \left(\frac{\partial x}{\partial y^{\prime}}\right)^{2} S_{x x}+2 \frac{\partial x}{\partial y^{\prime}} \frac{\partial y}{\partial y^{\prime}} S_{x y}+\left(\frac{\partial y}{\partial y^{\prime}}\right)^{2} S_{y y} \\
= & \left(x^{\prime}\right)^{2}+0+4 x^{2}=\left(x^{\prime}\right)^{2}+4\left(x^{\prime} y^{\prime}\right)^{2} \\
\Rightarrow S_{a^{\prime} b^{\prime}}= & =\left(\left(y^{\prime}\right)^{2} x^{\prime} y^{\prime}\right. \\
x^{\prime} y^{\prime}\left(x^{\prime}\right)^{2}+4\left(x^{\prime} y^{\prime}\right)^{2}
\end{array}\right) .
$$

Alternative: consider the thanfomation of the differentials

$$
\begin{aligned}
& d x=y^{\prime} d x^{\prime}+x^{\prime} d y^{\prime} \\
& d y=2 d y^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow S & =d x \otimes d x+x^{2} d y \otimes d y \\
& =\left(y^{\prime} d x^{\prime}+x^{\prime} d y^{\prime}\right) \otimes\left(y^{\prime} d x^{\prime}+x^{\prime} d y^{\prime}\right) \\
& +\left(x^{\prime} y^{\prime}\right)^{2}\left(2 d y^{\prime}\right) \otimes\left(2 d y^{\prime}\right) \\
& =\left(y^{\prime}\right)^{2} d x^{\prime} \otimes d x^{\prime}+x^{\prime} y^{\prime}\left(d x^{\prime} \otimes d y^{\prime}+d y^{\prime} \otimes d x^{\prime}\right) \\
& +\left[\left(x^{\prime}\right)^{2}+4\left(x^{\prime} y^{\prime}\right)^{2}\right] d y^{\prime} \otimes d y^{\prime}
\end{aligned}
$$

- Note: the gradient of a scalar (i.e., partial derivative) is a $(0,1)$-tenon $\rightarrow 1$-form:

$$
d \phi=\partial_{a} \phi d x^{a}
$$

but the partial derivative of a tensor is NOT a tensor:
Consider the transformation of $\partial_{a} W_{b}$ what W_{a} is a $(0,1)$ tensor:

$$
\begin{aligned}
\partial_{a^{\prime}} W_{b^{\prime}} & =\frac{\partial}{\partial x^{a^{\prime}}} W_{b^{\prime}}=\frac{\partial x^{a}}{\partial x^{a^{\prime}}} \partial_{a}\left(\frac{\partial x^{b}}{\partial x^{b^{\prime}}} W_{b}\right) \\
& =\frac{\partial x^{a}}{\partial x^{a}} \frac{\partial x^{b}}{\partial x^{b^{\prime}}} \partial_{a} W_{b}+\frac{\partial^{2} x^{b}}{\partial x^{a^{\prime}} \partial x^{b^{b}}} W_{b}
\end{aligned}
$$

\Rightarrow NOT a tensor!!

- The metric

Denoted fy gab (Mab is resewed far the Minkowaki metric)

- gab is a symmetric and mom-degmerate (i.e, ceto $\neq 0$) $(0,2)$ tensor \rightarrow we can define the inverse metric gab as $g^{a b} g_{b c}=\delta_{c}^{a} \quad\left(g^{a b}\right.$ is alow symmetric)
- The metric is important because:
- Allows to compute the length of waves
- Provides a motion of past and future
\rightarrow causal structure
- It represents the gravitational field in GR
- The line element, i.e., infinitesimal chintance is now given by:

$$
d s^{2}=g_{a b}(x) d x^{a} d x^{b}
$$

- Example: line clement in Eucliclean space in Cartesian and spherical coordinates

$$
\begin{aligned}
d s^{2} & =d x^{2}+d y^{2}+d z^{2} \\
x & =r \sin \theta \cos \phi \rightarrow d x=\sin \theta \cos \phi d r+r \cos \theta \sin \phi d \theta-r \sin \theta \sin \phi d \phi \\
y & =r \sin \theta \sin \phi \rightarrow d y=\sin \theta \sin \phi d r+r \cos \theta \sin \phi d \theta+r \sin \theta \cos \phi d \phi \\
z & =r \cos \theta \rightarrow d z=\cos \theta d r-r \sin \theta d \theta \\
\Rightarrow d s^{2} & =(\sin \theta \cos \phi d r+r \cos \theta \cos \phi d \theta-r \sin \theta \sin \phi d \phi)^{2} \\
& +(\sin \theta \sin \phi d r+r \cos \theta \sin \phi d \theta+r \sin \theta \cos \phi d \phi)^{2} \\
& +(\cos \theta d r-r \sin \theta d \theta)^{2} \\
& =d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}
\end{aligned}
$$

(Equivalent to $g_{a^{\prime} b^{\prime}}=\frac{\partial x^{a}}{\partial x^{a^{a}}} \frac{\partial x^{b}}{\partial x^{b^{\prime}}} g_{a b}$)

- It cam be shown that at a given point p on M one can always find coondinatos sit. the metric gab takes the form

$$
g_{a b}=\operatorname{diag}(-1,-1, \ldots,-1,1, \ldots, 1,0, \ldots, 0)
$$

with $\left.\partial_{c} g_{a b}\right|_{p}=0$ but $\left.\partial_{c} \partial_{d} g_{a b}\right|_{p} \neq 0$

- Signative: number of positive, negative and zero eigmvalues of $g_{a b}$
- Riemannian metric: all eigenvalues are positive
- Loventajan: all positive and one negative (or all negative and one positive)
- Degmunate (on null): some eigmualues are O

Given a metric gab on M ar can define:

- Norm of a vector $V^{a}:|V|^{2}=g_{a b} V^{a} V^{b}$
- Inna product between two vectors: $A \cdot B=g_{a b} A^{a} B^{b}$
- Null vators: $\operatorname{gab} A^{a} A^{b}=O$ (only fa Lanusfian)

Lower and raise indics:

$$
V_{a}=g_{a b} V^{b} \text { and } W^{a}=g^{a b} W_{b}
$$

and similarly fen higher rank tensors.
Covariant derivatives
Want to define a new derivative operation, called covariant chivative and denoted by ∇, s.t.

1) Is independent of the coordinates
2) Maps (k, l) tensors to $(k, \ell+1)$ tensors

- Consider two arbitrary tensor fields S and T. To uniquely determine ∇ we demand that ∇ obeys:

1) Limeanitg: $\nabla(T+S)=\nabla T+\nabla S$
2) Leibniz: $\nabla(T \otimes S)=(\nabla T) \otimes S+T \otimes(\nabla S)$
$\rightarrow \nabla$ can be written as ∂ plus some linear trannef. In the case of a vector field V^{a} :

$$
\nabla_{a} V^{b}=\partial_{a} V^{b}+\Gamma_{a c}^{b} V^{c}
$$

connection coefficients.
\rightarrow We can find the Γ 's by demanding that $\nabla_{a} V^{b}$ transforms as a $(1,1)$ tensor under changes of coordinates:

$$
\begin{aligned}
\nabla_{a^{\prime}} V^{b^{\prime}} & =\frac{\partial x^{a}}{\partial x^{a}} \frac{\partial x^{b \prime}}{\partial x^{b}} \nabla_{a} V^{b} \\
& =\partial_{a^{\prime}} V^{b^{\prime}}+\Gamma_{a^{\prime} c^{\prime}} V^{c^{\prime}} \\
& =\frac{\partial x^{a}}{\partial x^{a^{\prime}}} \partial_{a}\left(\frac{\partial x^{b^{\prime}}}{\partial x^{b}} V^{b}\right)+\Gamma_{a^{\prime} c^{\prime}}^{\prime^{\prime}} \frac{\partial x^{c}}{\partial x^{c}} V^{c} \\
& =\frac{\partial x^{a}}{\partial x^{a}} \frac{\partial x^{b^{\prime}}}{\partial x^{b}} \partial_{a} V^{b}+\frac{\partial x^{a}}{\partial x^{a^{\prime}}} \frac{\partial^{2} x^{b^{\prime}}}{\partial x^{a} \partial x^{b}} V^{b}+\Gamma_{a^{\prime} c^{\prime}}^{b^{\prime}} \frac{\partial x^{c}}{\partial x^{c}} V^{c} \\
& =\frac{\partial x^{a}}{\partial x^{a}} \frac{\partial x^{b^{\prime}}}{\partial x^{b}}\left(\partial_{a} V^{b}+\Gamma_{a c}^{b} V^{c}\right)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \Gamma_{a^{\prime} c^{\prime}}^{\prime^{\prime}} \frac{\partial x^{c}}{\partial x^{c}} V^{c}+\frac{\partial x^{a}}{\partial x^{a^{\prime}}} \frac{\partial^{2} x^{b}}{\partial x^{a} \partial x^{b}} V^{b}=\frac{\partial x^{a}}{\partial x^{a}} \frac{\partial x^{b}}{\partial x^{b}} \Gamma_{a c}^{b} V^{c} \\
& \Gamma_{a^{\prime} c^{\prime}}^{b^{\prime}} \frac{\partial x^{\prime}}{\partial x^{c}}+\frac{\partial x^{a}}{\partial x^{\prime}} \frac{\partial^{2} x^{b}}{\partial x^{a} \partial x^{c}}=\frac{\partial x^{a}}{\partial x^{a}} \frac{\partial x^{b}}{\partial x^{b}} \Gamma_{a c}^{b}
\end{aligned}
$$

Multiply this equation by $\frac{\partial x^{c}}{\partial x^{d^{\prime}}}$ and relabel $d^{\prime} \rightarrow c^{\prime}$

$$
\Gamma_{a^{\prime} c^{\prime}}^{b}=\frac{\partial x^{a}}{\partial x^{a}} \frac{\partial x^{c}}{\partial x^{c^{\prime}}} \frac{\partial x^{b}}{\partial x^{b}} \Gamma_{a c}^{b}-\frac{\partial x^{a}}{\partial x^{a}} \frac{\partial x^{c}}{\partial x^{c^{\prime}}} \frac{\partial^{2} x^{b}}{\partial x^{\wedge} \partial x^{c}}
$$

\Rightarrow The 「's ane NOT tensors !!!
\rightarrow We further impose:
3) ∇ commutes with contractions: $\nabla_{a}\left(T^{c} c b\right)=(\nabla T)_{a}^{c}<b$

$$
\Rightarrow \nabla_{a} \delta_{c}^{b}=0
$$

4) Reduces to the partial derivative when acting on scalars: $\nabla_{a} \phi=\partial_{a} \phi$
From these proputios we can deeluce the action of ∇ on 1 -forum:

$$
\begin{aligned}
\nabla_{a}\left(\omega_{b} V^{b}\right) & =\left(\nabla_{a} \omega_{b}\right) V^{b}+\omega_{b} \nabla_{a} V^{b} \\
& =\left(\nabla_{a} \omega_{b}\right) V^{b}+\omega_{b}\left(\partial_{a} V^{b}+\Gamma_{a c}^{b} V^{c}\right) \\
& =\partial_{a}\left(\omega_{b} V^{b}\right)=\left(\partial_{a} \omega_{b}\right) V^{b}+\omega_{b} \partial_{a} V^{b}
\end{aligned}
$$

$$
\Rightarrow \nabla_{a} w_{b}=\partial_{a} \omega_{b}-\Gamma_{a b}^{c} \omega_{c}
$$

Proceding in the same way one can determine the formula for ∇ acting on an arbitrany (k, e) tensor:

$$
\begin{aligned}
\nabla_{c} T^{a_{1} \ldots a_{k}} b_{1} \ldots b_{e}= & \partial_{c} T^{a_{1} \ldots a_{k}} b_{1}-b_{e} \\
& +\Gamma_{c d}^{a_{1}} T^{d_{a_{2} \ldots a_{k}}} b_{1-b_{c}}+\Gamma_{c d}^{a_{k}} T^{a_{1} \ldots a_{k-1}} b_{1} \ldots b_{e} \\
& -\Gamma_{c b_{1}}^{d} T^{a_{1} \ldots a_{k}} d_{b_{2} \ldots b_{c}}-\Gamma_{c b_{l}}^{d} T^{a_{1}-a_{k}}{ }_{b_{1} \ldots b_{e+1}}
\end{aligned}
$$

Cltemalive notation:

$$
\nabla_{c} T^{a_{1} \ldots a_{k}} b_{1} \ldots b_{e}=T^{a_{1} \ldots a_{k}} b_{1} \ldots b_{e} j k
$$

- One can still define many connections satiofy(n 1) - 4)
- The difference betwan two connections Γ and $\tilde{\Gamma}$ is a tensor:

$$
\begin{aligned}
\nabla_{a} V^{b}-\tilde{\nabla}_{a} V^{b} & =\partial_{a} V^{b}+\Gamma_{a c}^{b} V^{c}-\left(\partial_{a} V^{b}-\tilde{\Gamma}_{a c}^{b} V^{c}\right) \\
& =\left(\Gamma_{a c}^{b}-\tilde{\Gamma}_{a c}^{b}\right) V^{c}
\end{aligned}
$$

\rightarrow Since the LHS is a tensor by definition of covariant derivative, the RHS must also be a tensor:

$$
\Gamma_{a c}^{b}-\tilde{\Gamma}_{a c}^{b}=S_{a c}^{b}
$$

- Giver a connection Γ^{a} be one can define a new connection by pauling the lower indices $\Gamma^{a} b c \rightarrow \Gamma^{a} c b$ ado transforms as a connection
\Rightarrow To every connection we can associate a torsion tensor:

$$
T_{b c}^{a}=\Gamma_{b c}^{a}-\Gamma_{c b}^{a}=2 \Gamma_{[b c]}^{a}
$$

- On a manifold with a metric gab we can define a unique connection by introducing the plowing too additional requirements on $\Gamma^{\text {a }}$ be:

5) Torsion-fue: $\Gamma^{a} b c=\Gamma^{a} c b$
6) Metric compatibility: $\nabla a g b c=0$
\Rightarrow Levi- Civita connection
\rightarrow Torsion-free: $\nabla_{a} \nabla_{b} \phi=\nabla_{b} \nabla_{a} \phi$
\rightarrow Metric compatibility:

$$
\begin{aligned}
0 & =\nabla_{a} \delta^{b} c=\nabla_{a}\left(g^{b d} g_{d c}\right)=g_{d c} \nabla_{a} g^{b d}+g^{b d} \dot{\nabla}_{a} g_{d c} \\
& =g_{d c} \nabla_{a} g^{b d} \Rightarrow \nabla_{a} g^{b d}=0
\end{aligned}
$$

\rightarrow A metric-compatible covariant derivative commutes with raising and lowering the indices:

$$
g_{b c} \nabla_{a} V^{c}=\nabla_{a}\left(g_{b c} V^{c}\right)=\nabla_{a} V_{b}
$$

- To show existence and uniqueness of the metruc - compatible connexion we will now find the $\Gamma^{\prime} s$:

$$
\begin{gathered}
\nabla_{c} g_{a b}=\partial_{c} g_{a b}-\Gamma_{c a}^{d} g_{d b}-\Gamma_{c b}^{d} g_{a d}=0 \\
\nabla_{a} g_{b c}=\partial_{a} g_{b c}-\Gamma_{a b}^{d} g_{d c}-\Gamma_{a c}^{d} g_{b d}=0 \\
\nabla_{b} g_{c a}=\partial_{b} g_{c a}-\Gamma_{b c}^{d} g_{d a}-\Gamma_{b a}^{d} g_{c d}=0 \\
(1)-(2)-(3)=\partial_{c} g_{a b}-\partial_{a} g_{b c}-\partial_{b} g_{a c}+2 \Gamma_{a b}^{d} g_{d c}=0
\end{gathered}
$$

Multiplying by gee and relabelling the indices,

$$
\Gamma_{a b}^{c}=\frac{1}{2} g^{c d}\left(\partial_{a} g_{b d}+\partial_{b} g_{a d}-\partial_{d} g_{a b}\right)
$$

\rightarrow Christoffel symbols

Ereample : Chnistoffel symbols of 2-dimensional flat space in polar woundinates.

$$
\begin{aligned}
& d s^{2}=g_{a b} d x^{a} d x^{b}=d r^{2}+r^{2} d \theta^{2} \\
& \Rightarrow g_{r r}=1, g_{\theta \theta}=r^{2} \Rightarrow g^{r r}=1, g^{\theta \theta}=\frac{1}{r^{2}} \\
& \Gamma_{r r}^{r}=\frac{1}{2} g^{r d}\left(\partial_{r} g_{r d}+\partial_{r} g_{r d}-\partial_{d} g_{r r}\right) \\
& \quad=\frac{1}{2} g^{r r}\left(\partial r g_{r r}+\partial_{r} g_{r r}-\partial_{r} g_{r r}\right)=0 \\
& \Gamma_{\theta \theta}^{r}=\frac{1}{2} g^{r d}\left(2 \partial_{\theta} g_{\theta d}-\partial_{d} g_{\theta \theta}\right) \\
& \quad=\frac{1}{2} g^{r r}\left(2 \partial_{\theta} g_{\theta r}^{0}-\partial_{r} g_{\theta \theta}\right)=-r
\end{aligned}
$$

Similarly we compute

$$
\begin{aligned}
& \Gamma_{\theta r}^{r}=\Gamma_{r \theta}^{r}=0 \\
& \Gamma_{r r}^{\theta}=0, \quad \Gamma_{r \theta}^{\theta}=\Gamma_{\theta r}^{\theta}=\frac{1}{r}, \quad \Gamma_{\theta \theta}^{\theta}=0
\end{aligned}
$$

