MTH5113 (2023/24): Problem Sheet 3 Solutions

(1) (Warm-up)

(a) Compute the integral

$$
\int_{0}^{1} f(x) d x
$$

where f is the real-valued function

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=1+x+x^{2}+x^{3}
$$

(b) Compute the integral

$$
\int_{-\pi}^{\pi} g(t) d t
$$

where g is the real-valued function

$$
\mathrm{g}: \mathbb{R} \rightarrow \mathbb{R}, \quad \mathrm{g}(\mathrm{t})=\sin \mathrm{t} \cos \mathrm{t}
$$

(c) Compute the double integral

$$
\iint_{\mathcal{R}} h d A
$$

where \mathcal{R} is the rectangle $[0,5] \times[0,1]$, and where h is the function

$$
h: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad h(x, y)=e^{2 x}+e^{x} e^{y}
$$

(a) Notice that f is the derivative of the function

$$
F: \mathbb{R} \rightarrow \mathbb{R}, \quad F(x)=x+\frac{1}{2} \chi^{2}+\frac{1}{3} \chi^{3}+\frac{1}{4} \chi^{4}
$$

that is, $F^{\prime}(x)=f(x)$ for every $x \in \mathbb{R}$. Thus, by the fundamental theorem of calculus,

$$
\begin{aligned}
\int_{0}^{1} f(x) d x & =\int_{0}^{1} F^{\prime}(x) d x \\
& =F(1)-F(0)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(1+\frac{1}{2} \cdot 1^{2}+\frac{1}{3} \cdot 1^{3}+\frac{1}{4} \cdot 1^{4}\right)-\left(0+\frac{1}{2} \cdot 0^{2}+\frac{1}{3} \cdot 0^{3}+\frac{1}{4} \cdot 0^{4}\right) \\
& =\frac{25}{12} .
\end{aligned}
$$

(b) The easiest method is to recall the trigonometric identity

$$
g(t)=\sin t \cos t=\frac{1}{2} \sin (2 t), \quad t \in \mathbb{R}
$$

Noting that g is the derivative of the function

$$
G(t)=-\frac{1}{4} \cos (2 t)
$$

the fundamental theorem of calculus then yields

$$
\int_{-\pi}^{\pi} g(t) d t=\left.\left[-\frac{1}{4} \cos (2 t)\right]\right|_{x=-\pi} ^{x=\pi}=-\frac{1}{4} \cos (2 \pi)+\frac{1}{4} \cos (-2 \pi)=0 .
$$

Alternatively, if you do not remember the double angle formula, you can also integrate g by substitution. In particular, applying the change of variables

$$
u=\sin t, \quad d u=\cos t d t
$$

we then obtain

$$
\int_{-\pi}^{\pi} g(t) d t=\int_{-\pi}^{\pi} \sin t \cos t d t=\int_{0}^{0} u d u=0
$$

In particular, we noticed that $\mathrm{t}= \pm \pi$ both corresponded to $\mathrm{u}=0$.
(c) First, we apply Fubini's theorem to write the double integral as

$$
\iint_{\mathcal{R}} h d A=\int_{0}^{5}\left[\int_{0}^{1}\left(e^{2 x}+e^{x} e^{y}\right) d y\right] d x
$$

To evaluate the inner integral, we treat x as a constant and integrate with respect to y :

$$
\begin{aligned}
\iint_{\mathcal{R}} h d A & =\left.\int_{0}^{5}\left(e^{2 x} y+e^{x} e^{y}\right)\right|_{y=0} ^{y=1} d x \\
& =\int_{0}^{5}\left[e^{2 x}+(e-1) e^{x}\right] d x
\end{aligned}
$$

The remaining integral can also be computed directly:

$$
\begin{aligned}
\iint_{\mathcal{R}} h d A & =\left[\frac{1}{2} e^{2 x}+(e-1) e^{x}\right]_{x=0}^{x=5} \\
& =\left[\frac{1}{2} e^{10}+(e-1) e^{5}\right]-\left[\frac{1}{2}+(e-1)\right] \\
& =\frac{1}{2} e^{10}+e^{6}-e^{5}-e+\frac{1}{2}
\end{aligned}
$$

One can also integrate in the reverse order:

$$
\begin{aligned}
\iint_{\mathcal{R}} h d A & =\int_{0}^{1}\left[\int_{0}^{5}\left(e^{2 x}+e^{x} e^{y}\right) d x\right] d y \\
& =\int_{0}^{1}\left(\frac{1}{2} e^{10}+e^{5} e^{y}-\frac{1}{2}-e^{y}\right) d y \\
& =\frac{1}{2} e^{10}+e^{6}-e^{5}-e+\frac{1}{2}
\end{aligned}
$$

Both methods yield the same answer.
(2) (Warm-up)
(a) Consider the function

$$
\mathrm{V}: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}, \quad \mathrm{V}(\mathrm{x}, \mathrm{y})=\ln \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)
$$

(i) Compute the gradient $\nabla \mathrm{V}(\mathrm{x}, \mathrm{y})$ for each $(\mathrm{x}, \mathrm{y}) \in \mathbb{R}^{2} \backslash\{(0,0)\}$.
(ii) Find $\nabla \mathrm{V}(3,4)$ and $\nabla \mathrm{V}(-5,12)$.
(b) Consider the function

$$
w: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad w(x, y, z)=x y+x z+y z
$$

(i) Compute the gradient $\nabla \mathcal{w}(x, y, z)$ for each $(x, y, z) \in \mathbb{R}^{3}$.
(ii) Find $\nabla w(-1,1,6)$.
(a) These are direct computations using the definition of the gradient:
(i) First, we compute the partial derivatives of V . Using the chain rule yields

$$
\begin{aligned}
& \partial_{1} V(x, y)=\frac{1}{x^{2}+y^{2}} \cdot \partial_{x}\left(x^{2}+y^{2}\right)=\frac{2 x}{x^{2}+y^{2}} \\
& \partial_{2} V(x, y)=\frac{1}{x^{2}+y^{2}} \cdot \partial_{y}\left(x^{2}+y^{2}\right)=\frac{2 y}{x^{2}+y^{2}}
\end{aligned}
$$

Thus, by definition, the gradient of V, at any nonzero $(x, y) \in \mathbb{R}^{2}$, is

$$
\nabla V(x, y)=\left(\partial_{1} V(x, y), \partial_{2} V(x, y)\right)_{(x, y)}=\left(\frac{2 x}{x^{2}+y^{2}}, \frac{2 y}{x^{2}+y^{2}}\right)_{(x, y)}
$$

(ii) Here, we plug in the appropriate values for x and y :

$$
\begin{aligned}
\nabla \mathrm{V}(3,4) & =\left(\frac{2 \cdot 3}{3^{2}+4^{2}}, \frac{2 \cdot 4}{3^{2}+4^{2}}\right)_{(3,4)}=\left(\frac{6}{25}, \frac{8}{25}\right)_{(3,4)}, \\
\nabla \mathrm{V}(-5,12) & =\left(\frac{2 \cdot(-5)}{5^{2}+12^{2}}, \frac{2 \cdot 12}{5^{2}+12^{2}}\right)_{(-5,12)}=\left(-\frac{10}{169}, \frac{24}{169}\right)_{(-5,12)}
\end{aligned}
$$

(b) These are again direct computations:
(i) Taking partial derivatives, we obtain

$$
\partial_{1} w(x, y, z)=y+z, \quad \partial_{2} w(x, y, z)=x+z, \quad \partial_{3} w(x, y, z)=x+y
$$

Thus, the gradient of w, at any $(x, y, z) \in \mathbb{R}^{3}$, is given by

$$
\nabla w(x, y, z)=(y+z, x+z, x+y)_{(x, y, z)} .
$$

(ii) Here, we plug in the appropriate values for x, y, and z :

$$
\nabla w(-1,1,6)=(1+6,-1+6,-1+1)_{(-1,1,6)}=(7,5,0)_{(-1,1,6)} .
$$

(3) (Warm-up) Are the following parametric curves regular?
(a) Quartic function:

$$
\mathbf{a}: \mathbb{R} \rightarrow \mathbb{R}^{3}, \quad \mathbf{a}(\mathrm{t})=\left(\mathrm{t}, 0, \mathrm{t}^{4}\right)
$$

(b) No idea what to call this thing:

$$
\mathbf{b}: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad \mathbf{b}(\mathrm{t})=\left((\mathrm{t}-1)^{3}, e^{(\mathrm{t}-1)^{2}}\right) .
$$

(c) Lemniscate of Gerono:

$$
\mathbf{c}: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad \mathbf{c}(\mathrm{t})=(\cos \mathrm{t}, \sin \mathrm{t} \cos \mathrm{t}) .
$$

(a) To check whether \mathbf{a} is regular, we compute its derivative for each $t \in \mathbb{R}$:

$$
\mathbf{a}^{\prime}(\mathrm{t})=\left(1,0,4 \mathrm{t}^{3}\right) .
$$

In particular, $\mathbf{a}^{\prime}(\mathrm{t})$ never vanishes (since its \boldsymbol{x}-component is always 1), hence $\left|\mathbf{a}^{\prime}(\mathrm{t})\right|$ is everywhere non-zero. Thus, by definition, \mathbf{a} is regular.

We can also check $\left|\mathbf{a}^{\prime}(\mathrm{t})\right| \neq 0$ directly-in particular,

$$
\left|\mathbf{a}^{\prime}(\mathrm{t})\right|=\sqrt{1+16 \mathrm{t}^{6}} \geq \sqrt{1}=1 \neq 0, \quad \mathrm{t} \in \mathbb{R}
$$

since $16 t^{6}$ is always non-negative.
(b) We begin by differentiating \mathbf{b} (via the power and chain rules):

$$
b^{\prime}(t)=\left(3(t-1)^{2}, 2(t-1) e^{(t-1)^{2}}\right) .
$$

Note in particular that

$$
\mathbf{b}^{\prime}(1)=\left(3(1-1)^{2}, 2(1-1) e^{(1-1)^{2}}\right)=(0,0), \quad\left|\mathbf{b}^{\prime}(1)\right|=0 .
$$

As a result, \mathbf{b} is not regular.
(c) Differentiating \mathbf{c} using the product rule, we obtain

$$
\mathbf{c}^{\prime}(\mathrm{t})=\left(-\sin \mathrm{t}, \cos ^{2} \mathrm{t}-\sin ^{2} \mathrm{t}\right)=\left(-\sin \mathrm{t}, 1-2 \sin ^{2} \mathrm{t}\right)
$$

where in the last step, we used that $\cos ^{2} t+\sin ^{2} t=1$.
Observe that given any $t \in \mathbb{R}$, whenever the x-component of $\mathbf{c}^{\prime}(\mathrm{t})$ vanishes (that is, $\sin t=0$), the y-component of $\mathbf{c}^{\prime}(t)$ is $1-2 \sin ^{2} t=1 \neq 0$ and hence is nonzero. As a result,
$\mathbf{c}^{\prime}(\mathrm{t})$ can never vanish for any $\mathrm{t} \in \mathbb{R}$, and thus \mathbf{c} is regular.
(4) [Marked] Let g be the function

$$
f: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad f(x, y, z)=\frac{2}{625} e^{\frac{x+y}{5}}(x+y)
$$

and let C denote the region

$$
C=\left\{(x, y, z) \in \mathbb{R}^{3} \mid-(5-z) \leq x \leq(5-z),-(5-z) \leq y \leq(5-z), 0 \leq z \leq 5\right\}
$$

(a) Sketch the region C.
(b) Compute the triple integral

$$
\iiint_{C} f d V .
$$

(a) A sketch of the solid region C is given below: [2 mark for mostly correct sketch]

(b) We first apply Fubini's theorem to decompose

$$
\iiint_{C} f d V=\frac{2}{625} \int_{0}^{5} \int_{-(5-z)}^{(5-z)} \int_{-(5-z)}^{(5-z)} e^{\frac{x+y}{5}}(x+y) d x d y d z .[1 \text { mark }]
$$

The inner integral can now be computed using the fundamental theorem of calculus:

$$
\begin{aligned}
\iiint_{C} f d V & =\left.\frac{2}{125} \int_{0}^{5} \int_{-(5-z)}^{(5-z)} e^{\frac{x+y}{5}}(x+y-5)\right|_{x=-(5-z)} ^{x=5-z} d y d z \\
& =-\frac{2}{125} \int_{0}^{5} \int_{-(5-z)}^{(5-z)} e^{\frac{1}{5}(y-z-5)}\left(e^{2}(z-y)+e^{2 z / 5}(y+z-10)\right) d y d z
\end{aligned}
$$

Applying the fundamental theorem of calculus again yields

$$
\begin{aligned}
\iiint_{C} f d V & =\int_{0}^{5}-\left.\frac{2}{25} e^{\frac{1}{5}(y-z-5)}\left(e^{2}(-y+z+5)+e^{2 z / 5}(y+z-15)\right)\right|_{y=-(5-z)} ^{y=5-z} d z \\
& =\frac{4}{25} \int_{0}^{5}\left(e^{\frac{2 z}{5}-2}(z-10)-z e^{2-\frac{2 z}{5}}+10\right) d z
\end{aligned}
$$

The final integral is similarly computed:

$$
\begin{aligned}
\iiint_{C} f d V & =\left.\frac{1}{5}\left(8 z+e^{\frac{2 z}{5}-2}(2 z-25)+e^{2-\frac{2 z}{5}}(2 z+5)\right)\right|_{z=0} ^{z=5} \\
& =8+\frac{5}{e^{2}}-e^{2}
\end{aligned}
$$

[2 marks for mostly correct computation]
(5) [Tutorial] Answer the following:
(a) Let f be the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y)=x^{2} y
$$

and let D denote the triangular region

$$
D=\left\{(x, y) \in \mathbb{R}^{2}|0 \leq y \leq 1,|x| \leq y\}\right.
$$

(i) Sketch the region D on a Cartesian plane.
(ii) Compute the double integral

$$
\iint_{D} \mathrm{f} d A .
$$

(b) Let Q denote the region

$$
\mathrm{Q}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 0 \leq x \leq y+z, 0 \leq y \leq 1,0 \leq z \leq 1\right\}
$$

(i) Sketch the region Q (or at least, do the best you can).
(ii) Use a triple integral to compute the volume of Q .
(a) A sketch of D is below (D is the green region):

To compute the double integral, we apply Fubini's theorem (to a rectangular region containing D, and to a function that is equal to f on D and vanishes outside D):

$$
\iint_{D} f d A=\int_{0}^{1}\left[\int_{-y}^{y} x^{2} y d x\right] d y .
$$

To evaluate the inner integral, we apply the fundamental theorem of calculus:

$$
\iint_{D} f d A=\left.\frac{1}{3} \int_{0}^{1} y\left(x^{3}\right)\right|_{x=-y} ^{x=y} d y=\frac{2}{3} \int_{0}^{1} y^{4} d y .
$$

Applying the fundamental theorem of calculus again to the remaining integral yields

$$
\iint_{D} \mathrm{fdA}=\left.\frac{2}{3} \cdot \frac{1}{5} y^{5}\right|_{y=0} ^{y=1}=\frac{2}{15} .
$$

(b) A sketch of the solid region Q is given below:

To compute the volume of Q , we first apply Fubini's theorem to decompose

$$
\mathcal{V}(\mathrm{Q})=\iiint_{Q} 1 \mathrm{~d} V=\int_{0}^{1} \int_{0}^{1} \int_{0}^{y+z} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
$$

The iterated integrals can now be computed using the fundamental theorem of calculus:

$$
\begin{aligned}
\mathcal{V}(\mathrm{Q}) & =\int_{0}^{1} \int_{0}^{1}(y+z) d y d z \\
& =\int_{0}^{1}\left(\frac{1}{2}+z\right) \mathrm{d} z \\
& =1
\end{aligned}
$$

(6) (Fun with cycloids) Consider the parametric curve

$$
\mathbf{c}: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad \mathbf{c}(\mathrm{t})=(\mathrm{t}-\sin \mathrm{t}, 1-\cos \mathrm{t})
$$

(The path mapped out by \mathbf{c} is known as a cycloid.)
(a) Show that \mathbf{c} is not regular. At which $t \in \mathbb{R}$ do the values $\left|\mathbf{c}^{\prime}(\mathrm{t})\right|$ vanish?
(b) Plot the image of \mathbf{c} using a computer (see the links on the QMPlus page). What happens at the points $\mathbf{c}(\mathrm{t})$ along the plot at which $\left|\mathbf{c}^{\prime}(\mathrm{t})\right|=0$?
(a) Taking a derivative of \mathbf{c} yields

$$
\mathbf{c}^{\prime}(\mathrm{t})=(1-\cos \mathrm{t}, \sin \mathrm{t}) .
$$

Taking the norm of the above, we see that

$$
\begin{aligned}
\left|\mathbf{c}^{\prime}(t)\right| & =\sqrt{(1-\cos t)^{2}+\sin ^{2} t} \\
& =\sqrt{1-2 \cos t+\cos ^{2} t+\sin ^{2} t} \\
& =\sqrt{2-2 \cos t} .
\end{aligned}
$$

In particular, note that $\left|\mathbf{c}^{\prime}(\mathrm{t})\right|$ vanishes whenever $\cos \mathrm{t}=1$.
Recalling the basic properties of the cosine function, we conclude that $\left|\mathbf{c}^{\prime}(\mathrm{t})\right|$ vanishes whenever $t=2 k \pi$ for any integer k. In particular, \mathbf{c} fails to be regular.
(b) A computer plot of the values of \mathbf{c} is given below:

The points on the plot at which \mathbf{c}^{\prime} vanishes are marked in green. At these points, the plot contains a "jagged edge" in which the direction of the path changes instantaneously.
(7) (More parametric curves) For each of the following parametric curves γ : (i) sketch, with the help of a computer, the image of γ, and (ii) determine whether γ is regular.
(a) Cissoid of Diocles:

$$
\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad \gamma(\mathrm{t})=\left(\frac{\mathrm{t}^{2}}{1+\mathrm{t}^{2}}, \frac{\mathrm{t}^{3}}{1+\mathrm{t}^{2}}\right) .
$$

(b) Witch of Agnesi:

$$
\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad \gamma(\mathrm{t})=\left(\mathrm{t}, \frac{1}{1+\mathrm{t}^{2}}\right) .
$$

(c) Tricuspoid:

$$
\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad \gamma(t)=(2 \cos t+\cos (2 t), 2 \sin t-\sin (2 t)) .
$$

(a) First, we differentiate γ using the quotient rule:

$$
\begin{aligned}
\gamma^{\prime}(t) & =\left(\frac{d}{d t}\left(\frac{t^{2}}{1+t^{2}}\right), \frac{d}{d t}\left(\frac{t^{3}}{1+t^{2}}\right)\right) \\
& =\left(\frac{\left(1+t^{2}\right) \cdot 2 t-t^{2} \cdot 2 t}{\left(1+t^{2}\right)^{2}}, \frac{\left(1+t^{2}\right) \cdot 3 t^{2}-t^{3} \cdot 2 t}{\left(1+t^{2}\right)^{2}}\right) \\
& =\left(\frac{2 t}{\left(1+t^{2}\right)^{2}}, \frac{t^{4}+3 t^{2}}{\left(1+t^{2}\right)^{2}}\right) .
\end{aligned}
$$

Note in particular that

$$
\gamma^{\prime}(0)=\left(\frac{2 \cdot 0}{\left(1+0^{2}\right)^{2}}, \frac{0^{4}+3 \cdot 0^{2}}{(1+0)^{2}}\right)=(0,0) .
$$

As a result, γ is not regular.
(b) Differentiating γ yields, for each $t \in \mathbb{R}$,

$$
\gamma^{\prime}(\mathrm{t})=\left(1,-\frac{2 \mathrm{t}}{\left(1+\mathrm{t}^{2}\right)^{2}}\right) .
$$

In particular, observe that $\gamma^{\prime}(t) \neq(0,0)$ for any $t \in \mathbb{R}$, since the x-component of $\gamma^{\prime}(t)$ is never vanishes. Thus, γ is regular.
(c) First, differentiating γ yields

$$
\gamma^{\prime}(t)=(-2 \sin t-2 \sin (2 t), 2 \cos t-2 \cos (2 t)) .
$$

Observe in particular that,

$$
\gamma^{\prime}(0)=(-2 \cdot 0-2 \cdot 0,2 \cdot 1-2 \cdot 1)=(0,0),
$$

and hence γ fails to be regular.

If you cannot see the above directly, you can also try to directly solve the system

$$
\begin{equation*}
-2 \sin t-2 \sin (2 t)=0, \quad 2 \cos t-2 \cos (2 t)=0 \tag{1}
\end{equation*}
$$

Using some trigonometric identities, the first equation of (1) can be rearranged as

$$
-\sin t=\sin (2 t)=2 \sin t \cos t
$$

which is satisfied if and only if $\cos t=-\frac{1}{2}$ or $\sin t=0$. One specific solution of this is $t=0$, which you can then check also satisfies the second equation in (1). (Other values of t that also solve both equations in (1) include $t=\frac{2 \pi}{3}$ and $t=\frac{4 \pi}{3}$.)
(8) (Reparametrise my hyperbola!) Consider the following parametric curves:

$$
\begin{array}{ll}
\mathbf{a}: \mathbb{R} \rightarrow \mathbb{R}^{2}, & \mathbf{a}(\mathrm{t})=(\cosh \mathrm{t}, \sinh \mathrm{t}) \\
\mathbf{b}: \mathbb{R} \rightarrow \mathbb{R}^{2}, & \mathbf{b}(\mathrm{t})=\left(\sqrt{1+\mathrm{t}^{2}}, \mathrm{t}\right)
\end{array}
$$

(a) Sketch the image of \mathbf{b}.
(b) Show that both \mathbf{a} and \mathbf{b} are regular.
(c) Show that $\mathbf{a}(\mathrm{t})=\mathbf{b}(\sinh \mathrm{t})$ for any $\mathrm{t} \in \mathbb{R}$. According to definition, what else must you to show in order to demonstrate that \mathbf{a} and \mathbf{b} are reparametrisations of each other?
(d) Finish what you started in (c) -show that \mathbf{a} and \mathbf{b} are reparametrisations of each other. (You will not need advanced knowledge, but you will have to be extra resourceful.)
(a) A sketch of the image of \mathbf{b} is found below:

(b) First, for a, we recall the derivative formulas for cosh and sinh:

$$
\mathbf{a}^{\prime}(\mathrm{t})=(\sinh \mathrm{t}, \cosh \mathrm{t}), \quad \mathrm{t} \in \mathbb{R} .
$$

Recalling the identity $\cosh ^{2} t-\sinh ^{2} t=1$, we obtain, for each $t \in \mathbb{R}$,

$$
\left|\mathbf{a}^{\prime}(\mathrm{t})\right|=\sqrt{\sinh ^{2} \mathrm{t}+\cosh ^{2} \mathrm{t}}=\sqrt{1+2 \sinh ^{2} \mathrm{t}} \geq \sqrt{1}>0
$$

and it follows that \mathbf{a} is indeed regular.
Similarly, for \mathbf{b}, we differentiate:

$$
\mathbf{b}^{\prime}(\mathrm{t})=\left(\frac{\mathrm{t}}{\sqrt{1+\mathrm{t}^{2}}}, 1\right) .
$$

Since the y-component of $\mathbf{b}^{\prime}(t)$ never vanishes, it follows that \mathbf{b} is regular.
(c) Using again that $\cosh ^{2} t-\sinh ^{2} t=1$, we compute

$$
\mathbf{b}(\sinh t)=\left(\sqrt{1+\sinh ^{2} t}, \sinh t\right)=\left(\sqrt{\cosh ^{2} t}, \sinh t\right)=(\cosh t, \sinh t)=\mathbf{a}(t),
$$

where in the second to last step, we recalled that cosh t is always positive.
To show that \mathbf{a} and \mathbf{b} are reparametrisations of each other, we must show, in addition
to the above, that the change of variables $\phi(\mathrm{t})=\sinh \mathrm{t}$ satisfies: (i) ϕ is smooth, (ii) ϕ is a bijection between \mathbb{R} and itself, and (iii) its inverse ϕ^{-1} is smooth.
(d) First, note that ϕ is smooth since

$$
\phi(t)=\sinh t=\frac{1}{2}\left(e^{t}-e^{-t}\right),
$$

and the exponential functions on the right-hand side are clearly smooth.
Next, we recall that ϕ is always strictly increasing, since for any $t \in \mathbb{R}$,

$$
\phi^{\prime}(t)=\cosh t=\frac{1}{2}\left(e^{t}+e^{-t}\right)>0 .
$$

In particular, if $t<t^{\prime}$, then $\phi(t)<\phi\left(t^{\prime}\right)$. Thus, it follows that ϕ is injective.
Now, consider any $s \in \mathbb{R}$, and let us try to solve

$$
\sinh t=\phi(t)=s
$$

Consulting Google Applying some really clever algebraic manipulations, the above becomes

$$
s=\frac{1}{2}\left(e^{t}-e^{-t}\right), \quad\left(e^{t}\right)^{2}-2 s \cdot e^{t}-1=0
$$

and the quadratic formula yields

$$
e^{t}=s \pm \sqrt{s^{2}+1}
$$

Since $s+\sqrt{s^{2}+1}>0$ (for any $s \in \mathbb{R}$), we can take its logarithm, and hence

$$
t=\ln \left(s+\sqrt{s^{2}+1}\right)
$$

solves the equation $\phi(\mathrm{t})=\mathrm{s}$. In particular, ϕ is surjective onto \mathbb{R}. Moreover, since ϕ is injective and surjective, it follows that ϕ is a bijection between \mathbb{R} and itself.

Finally, the above derivation also gives a formula for the inverse of ϕ :

$$
\phi^{-1}(s)=\ln \left(s+\sqrt{s^{2}+1}\right) .
$$

Since $s+\sqrt{s^{2}+1}>0$ for all $s \in \mathbb{R}$, and since \ln is infinitely differentiable as long as its input is positive, it follows that ϕ^{-1} is smooth.
(9) (Numbers, Sets, and Functions revisited) Let \mathcal{P} denote the set of all regular parametric curves in \mathbb{R}^{n}. Given any two $\gamma_{1}, \gamma_{2} \in \mathcal{P}$, we write $\gamma_{1} \sim \gamma_{2}$ iff γ_{1} is a reparametrisation of γ_{2}. Show that this \sim defines an equivalence relation on \mathcal{P}.

To show \sim is an equivalence relation, we must show \sim is reflexive, symmetric, and transitive.

First, to show \sim is reflexive, we must show that $\gamma \sim \gamma$ for any $\gamma \in \mathcal{P}$. To see this, we simply note that if $\gamma: I \rightarrow \mathbb{R}^{n}$, then the identity function on I,

$$
\phi_{0}: I \rightarrow I, \quad \phi(t)=t
$$

trivially satisfies $\gamma\left(\phi_{0}(\mathrm{t})\right)=\gamma(\mathrm{t})$ for all $\mathrm{t} \in \mathrm{I}$. Moreover, clearly ϕ_{0} is a bijection between I and itself, and both ϕ_{0} and its inverse (which is equal to ϕ_{0}) are smooth as well. Thus, by definition, γ is a reparametrisation of itself, and hence $\gamma \sim \gamma$.

Next, to show symmetry, we must show that if $\gamma_{1} \sim \gamma_{2}$, where $\gamma_{1}: I_{1} \rightarrow \mathbb{R}^{n}$ and $\gamma_{2}: I_{2} \rightarrow$ \mathbb{R}^{n} are regular parametric curves, then $\gamma_{2} \sim \gamma_{1}$ as well. Since we assume $\gamma_{1} \sim \gamma_{2}$, the corresponding (bijective) change of variables $\phi: I_{1} \leftrightarrow I_{2}$ satisfies $\gamma_{2}(\phi(t))=\gamma_{1}(t)$ for all $t \in I_{1}$, with both ϕ and ϕ^{-1} being smooth. A direct substitution then yields

$$
\gamma_{1}\left(\phi^{-1}(\mathrm{t})\right)=\gamma_{2}(\mathrm{t}), \quad \mathrm{t} \in \mathrm{I}_{2}
$$

Moreover, ϕ^{-1} is clearly a bijection between I_{2} and I_{1}, and both ϕ^{-1} and its inverse ϕ are already known to be smooth. Thus, γ_{2} is a reparametrisation of γ_{1}, that is, $\gamma_{2} \sim \gamma_{1}$.

Finally, to show \sim is transitive, we must show that if $\gamma_{1} \sim \gamma_{2}$ and $\gamma_{2} \sim \gamma_{3}$, where γ_{1} and γ_{2} are as before, and where $\gamma_{3}: I_{3} \rightarrow \mathbb{R}^{n}$ is a regular parametric curve, then $\gamma_{1} \sim \gamma_{3}$. Now, let $\phi_{12}: I_{1} \leftrightarrow I_{2}$ and $\phi_{23}: I_{2} \leftrightarrow I_{3}$ denote the corresponding changes of variables, satisfying

$$
\gamma_{2}\left(\phi_{12}(t)\right)=\gamma_{1}(t), \quad t \in I_{1}, \quad \gamma_{3}\left(\phi_{23}(s)\right)=\gamma_{2}(s), \quad s \in I_{2}
$$

and let ϕ_{13} be the composition $\phi_{23} \circ \phi_{12}$ of ϕ_{23} with ϕ_{12}. Then, ϕ_{13} is a bijection between I_{1} and I_{3}, and by the chain rule, both $\phi_{13}=\phi_{23} \circ \phi_{12}$ and its inverse $\phi_{13}^{-1}=\phi_{12}^{-1} \circ \phi_{23}^{-1}$ are smooth. Furthermore, a direct computation yields that

$$
\gamma_{3}\left(\phi_{13}(t)\right)=\gamma_{3}\left(\phi_{23}\left(\phi_{12}(t)\right)\right)=\gamma_{2}\left(\phi_{12}(t)\right)=\gamma_{1}(t), \quad t \in I_{1}
$$

Combining all the above, we conclude that γ_{1} is a reparametrisation of γ_{3}, and thus $\gamma_{1} \sim \gamma_{3}$.

