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6 Matrix approach to Simple Linear Regression 

 

6.1 Re-writing the model in matrix form 

Simple linear regression models can also be fitted using matrix approaches. We can think of the 
previous simple linear regression model based on n observations for (xi, yi) as a set of n equations: 

𝑦 =  𝛽 +  𝛽 𝑥 +  𝜀  

𝑦 =  𝛽 +  𝛽 𝑥 +  𝜀  

… 

𝑦 =  𝛽 +  𝛽 𝑥 +  𝜀  

Now these same n equations can be re-written using matrices and vectors. 

If, 

 Y is a (nx1) vector of observations yi 
 X is a (nx2) matrix called the design matrix where the first column is a series of 1 and the 

second column is the set of observations xi 
 β is a (2x1) vector of the unknown parameters 𝛽  and 𝛽  

then the n equations can be rewritten  

Y = X 𝛃 +  𝜀 

This way of writing the simple linear model is sometimes called the General Linear Model (but care is 
needed here not to confuse that terminology with Generalised Linear Modelling or GLM which is a 
different form of statistical modelling you will encounter in later statistics modules). 

Now Y and 𝜀 here are random vectors, that is they are vectors whose elements are random 
variables. Before we can fit the simple linear regression model in matrix form we need to cover 
some properties of random vectors and also introduce the Multivariate Normal Distribution as a 
more general case of the usual Normal Distribution used so far. 

 

6.2 Random Vectors 

The first property of random vectors we will need is that the expected value of a random vector is 
the vector of expected values of the components of that random vector. 

So if 𝑧 =  (𝑧 , … , 𝑧 )  is a random vector then 

𝐸[𝑧] = 𝐸

 
𝑧
𝑧
…
𝑧

=  

⎝

⎜
⎛

 
𝐸[𝑧 ]

𝐸[𝑧 ]
…

𝐸[𝑧 ]

⎠

⎟
⎞

 

We also have properties for expectation of linear transformations of random vectors which are 
analogous to the properties for single random variables. So if a is a constant, b is a constant vector, 
and A, B are matrices of constants, then 



29 
 

 𝐸[𝑎𝑧 + 𝑏] = 𝑎𝐸[𝑧] + 𝑏 
 𝐸[𝑨𝑧] = 𝑨𝐸[𝑧] 
 𝐸[𝑧 𝑩] =  𝐸[𝑧]  𝑩 

With random vectors, variances and covariances of the random variables 𝑧  together form the 
dispersion matrix sometimes called the variance-covariance matrix. 

𝑉𝑎𝑟(𝑧) =  
𝑣𝑎𝑟(𝑧 ) ⋯ 𝑐𝑜𝑣(𝑧 , 𝑧 )

⋮ ⋱ ⋮
𝑐𝑜𝑣(𝑧 , 𝑧 ) ⋯ 𝑣𝑎𝑟(𝑧 )

 

 𝑉𝑎𝑟(𝑧) can also be expressed as 𝐸[(𝑧 − 𝐸[𝑧])(𝑧 − 𝐸[𝑧]) ] 
 the dispersion matrix is symmetric since 𝑐𝑜𝑣 𝑧 , 𝑧  = 𝑐𝑜𝑣 𝑧 , 𝑧  
 if all of the 𝑧  are uncorrelated all 𝑐𝑜𝑣 𝑧 , 𝑧  = 0 and hence the dispersion matrix is diagonal 

with the variances 
 if A is a matrix of constants then 𝑉𝑎𝑟(𝑨𝑧) = 𝑨 𝑉𝑎𝑟(𝑧) 𝑨  

 

6.3 The Multivariate Normal Distribution 
 

MTH5129 Probability & Statistics II introduced the Bivariate Normal Distribution. We will now extend 
this to a general case where there are more than two random variables, known as the Multivariate 
Normal Distribution. 

A random vector z has a multivariate normal distribution if its probability density function (pdf) can 
be written in the form 

𝑓(𝑧) =  
1

(2𝜋) / det(𝑽)
 exp {−

1

2
(𝑧 −  𝜇) 𝑽 (𝑧 −  𝜇)} 

where, 

 vector 𝜇 is the mean of z 
 𝑽 is the dispersion matrix of z 
 det(𝑽) is the determinant of V 

With the multivariate normal distribution we typically use the notation 𝑧 ~ 𝑁 (𝜇, 𝑽) 

 

6.4 Least Squares Estimation using matrices 

We are now ready to consider least squares estimation in the general linear model using matrices. 
Our goal is to find 𝜷 a (2x1) vector with the least squares estimates of the model parameters 𝛽  and 
𝛽 . 

When we estimated parameters 𝛽  and 𝛽  in the simple linear regression model before we solved 
the two simultaneous “normal equations” found from taking the derivative of the equation for the 
sum of squares of errors with respect to each of the two parameters. In matrix form and with our 
general linear model above, the normal equations become, 

𝑿𝑻𝒚 =  𝑿𝑻𝑿 𝜷 
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Now as long as 𝑿𝑻𝑿 is invertible, that is its determinant is not zero, then there is a unique solution 
to the matrix form normal equations given by 

𝜷 =  (𝑿𝑻𝑿) 𝑿𝑻𝒚 

 

In the simple linear regression model, 

𝑿 =  
1 𝑥
⋮ ⋮
1 𝑥

 

therefore 

𝑿𝑻𝒚 =  
1 … 1
𝑥 … 𝑥

𝑦
⋮

𝑦
=  

𝑦

𝑥 𝑦
 

and 

𝑿𝑻𝑿 =  
𝑛 𝑥

𝑥 𝑥
 

which means that the determinant of 𝑿𝑻𝑿 is 

𝑿𝑻𝑿 = 𝑛 𝑥 −  𝑥 = 𝑛 𝑆  ≠ 0 

hence there is a solution to the normal equations. 

The inverse of 𝑿𝑻𝑿 is given by 

(𝑿𝑻𝑿) =
1

𝑛 𝑆  
 

𝑥 − 𝑥

− 𝑥 𝑛
=  

1

𝑆  
 

1

𝑛
𝑥 −�̅�

−�̅� 1

 

which means we now have all the components we need to solve the normal equations in matrix 
form. 

𝜷 =  (𝑿𝑻𝑿) 𝑿𝑻𝒚 

𝜷 =  
1

𝑆  
 

1

𝑛
𝑥 −�̅�

−�̅� 1

𝑦

𝑥 𝑦
 

𝜷 =  
 
 

∑ 𝑥 ∑ 𝑦 − �̅� ∑ 𝑥 𝑦  

∑ 𝑥 𝑦 −  �̅� ∑  𝑦  
=  

 
 

𝑦𝑆 −  �̅�𝑆

𝑆
=  

𝑦 − 𝛽 �̅� 

𝛽
  

 

which is identical to the previous result for 𝛽  and 𝛽  in the simple linear regression model not in 
matrix form. 
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Then the fitted values in matrix form are then, 

𝝁 =  𝒙 𝜷 =  𝛽 +  𝛽 𝑥  

and the Residual Sum of Squares in matrix form is 

𝑆𝑆 =  𝒚𝑻𝒚 − 𝜷𝑻𝑿𝑻𝒚 

which if you complete all the matrix multiplication gives 

𝑆𝑆 =  𝑆 − 𝛽 𝑆 =  𝑆 − 
(𝑆 )

𝑆
 

 

6.5 Properties that follow from the matrix approach 

There follows a number of theorem and lemmas that flow from the matrix approach parameters and 
residuals which we will present here. 

 

(a) The least squares estimator 𝜷 is an unbiased estimator of 𝛃 that is 𝐸 𝜷 =  𝜷 

 

(b) 𝑉𝑎𝑟[𝛃] =  𝜎  (𝑿𝑻𝑿)  

 

(c) If, Y = X 𝛃 +  𝜀 and 𝜀~ 𝑁 (𝟎, 𝜎 𝑰) then 𝜷 ~ 𝑁 (𝛃, 𝜎 (𝑿𝑻𝑿) ) 

 

(d) The vector of fitted values, 𝝁 = 𝒀 =  𝑿𝜷 can be written in the form 𝝁 = 𝑯𝒀 where 𝑯 is 
called the hat matrix and is given by 𝑯 = 𝑿 (𝑿𝑻𝑿)  𝑿𝑻 and 𝑯 has the two properties that 
𝑯 =  𝑯𝑻 and 𝑯𝑯 = 𝑯 (this second property is called an indempotent matrix). 

 

(e) If the residual vector is 𝒆 = 𝒀 − 𝒀 = 𝒀 − 𝑯𝒀 = (𝑰 − 𝑯)𝒀 then 𝐸[𝒆] = 𝟎 
 

(f) 𝑉𝑎𝑟[𝒆] =  𝜎 (𝑰 − 𝑯) 
 

(g) The sum of squares of the residuals is 𝒀𝑻(𝑰 − 𝑯)𝒀 
 

(h) The elements of the residual vector 𝒆 sum to zero, that is ∑ 𝑒 = 0 
 

(i) Because of the result (h) above and all the 𝑒  sum to zero, we also have ∑ 𝑌 = 𝑌 

 

 

The centred form of the simple linear regression model can also be written in matrix or general 
linear form. From before the centred form was 𝑦 =  𝛼 +  𝛽(𝑥 −  𝑥 ) + 𝜀   
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Now in matrix form and centred we use 

𝑿 =  
1 𝑥 − �̅�
⋮ ⋮
1 𝑥 − �̅�

 

and  

𝜷 =  
𝛼
𝛽  

and the results which follow are 

𝛼 = 𝑦 

𝛽 =  
𝑆

𝑆
 

𝑣𝑎𝑟[𝛼] =  𝜎 /𝑛 

𝑣𝑎𝑟 𝛽 =  
𝜎

𝑆
 

and  

𝑐𝑜𝑣 𝛼, 𝛽 = 0 

This last result, that 𝛼 and 𝛽 are uncorrelated, can make this centred form useful in certain areas of 
practical work. 
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6.6 Maximum Likelihood Estimation 

So far, we have used least squares estimation to find our model parameter estimators 𝜷. There are 
other ways of finding estimates for parameters in a model and we will now consider one here that is 
widely used beyond the simple linear regression model. This is Maximum Likelihood Estimation 
(MLE) which you will encounter in a number of different contexts and with various probability 
distributions, in later statistics modules. 

Let us say we have a set of n observations Y1, Y2, … Yn which are assumed to be independent 
observations which all come from the same probability distribution. 

Now let us say that the probability distribution from which these are assumed to come has a 
probability density function 𝑓(𝑦 ) which has a parameter 𝜃 so that the pdf can be written 𝑓(𝑦 |𝜃). 
The parameter 𝜃 is unknown and we wish to estimate it by Maximum Likelihood Estimation. 

The maximum likelihood estimator of 𝜃 is that value of 𝜃 which maximises the joint probability that 
the n observations occur. To find this probability to maximise we develop something called the 
Likelihood function which is usually written 𝐿(𝜃, 𝑦) or sometimes just 𝐿(𝜃) and is a function of 𝜃. 

𝐿(𝜃, 𝑦) =  𝑓(𝑦 |𝜃) 

And for discrete observations this becomes 

𝐿(𝜃, 𝑦) =  𝑃𝑟(𝑌 = 𝑦 |𝜃) 

The maximum likelihood estimator written 𝜃 is that value of 𝜃 which maximises the Likelihood 
function 𝐿(𝜃, 𝑦). 

Once again, we will use calculus to find the estimator. In least squares estimation we differentiated 
the sum of squares equation with respect to the model parameters β0 and β1 and set to zero to find 
a minimum. Here we will differentiate the Likelihood function with respect to the parameters and 
set to zero to find a maximum. 

In most cases of MLE for probability distributions it is easier to take the log of the likelihood function 
and differentiate log  𝐿(𝜃, 𝑦) rather than 𝐿(𝜃, 𝑦). The 𝜃 that maximises log  𝐿(𝜃, 𝑦) will be the same 
as the one that maximises 𝐿(𝜃, 𝑦). 

Before we look at MLE for the Normal distribution and its application to the simple linear regression 
model, let us look at MLE for a more straightforward probability distribution, the Binomial. 

Let us say that we have n binomial trials where 𝑦 = 1 if the ith trial is a success and 𝑦 = 0 
otherwise. 

Let the probability of a success be p (which is unknown and we seek to estimate from the n 
observations). We seek the Maximum Likelihood Estimator of p the Binomial success parameter. 

If 𝑦 =  ∑ 𝑦  that is the total number of successful trials, 

Then the Likelihood function is 

𝐿(𝑝) = 𝐿(𝑦 … 𝑦 |𝑝) =  𝑝 (1 − 𝑝)  
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And we seek �̂� which is the value of p that maximises 𝐿(𝑝) by differentiating and setting to zero. 

As 𝐿(𝑝) is a product of functions, it will be easier to differentiate log 𝐿(𝑝) 

𝑙𝑜𝑔𝐿(𝑝) = log(𝑝 (1 − 𝑝) ) = 𝑦 log(𝑝) + (𝑛 − 𝑦)log (1 − 𝑝) 

And 

𝑑𝑙𝑜𝑔𝐿(𝑝)

𝑑𝑝
= 𝑦

1

𝑝
− (𝑛 − 𝑦)

1

1 − 𝑝
 

If we set this to zero and solve for p 

𝑦
1

�̂�
− (𝑛 − 𝑦)

1

1 − �̂�
= 0 

𝑦

�̂�
−

𝑛 − 𝑦

1 − �̂�
= 0 

𝑦(1 − �̂�) = (𝑛 − 𝑦)�̂� 

𝑦 = 𝑛�̂� 

�̂� =  
𝑦

𝑛
 

So the MLE for Binomial parameter p is the proportion of observed trials that are successful. 

To complete this we should take second derivatives to see that we have found a maximum not a 
minimum for the log likelihood. 

The Binomial example highlights one of the key properties of (and advantages of) maximum 
likelihood estimators. With this Binomial case we would expect the quality of the estimate to 
increase with sample size n. Statistically we say that the estimator has strong asymptotic properties, 
that is as n → ∞  

In particular, maximum likelihood estimators are: 

 Asymptotically unbiased 
 Normally distributed 
 Achieve the smallest variance possible. 

But the Binomial example also highlights the key weakness  

 At small n the estimator can be biased 
 In general the asymptotic properties may not apply at smaller sample sizes. 

 

We can now move to MLE in the Normal distribution which we will need to apply maximum 
likelihood in the simple linear regression model. 

For a normal distribution with mean 𝜇 and variance 𝜎  we can estimate 𝜇 by MLE. We begin with 
the Normal pdf 

𝑓(𝑦|𝜇) =  
1

𝜎√2𝜋
exp −

1

2𝜎
(𝑦 −  𝜇)  
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And so the likelihood function is 

𝐿(𝜇, 𝑦) =  
1

𝜎 (2𝜋) /
exp −

1

2𝜎
 (𝑦 −  𝜇)   

And taking logs 

𝑙𝑜𝑔𝐿 =  − log 𝜎 (2𝜋) − 
1

2𝜎
 (𝑦 −  𝜇)  

Differentiating 

𝑑𝑙𝑜𝑔𝐿

𝑑𝜇
=  

1

𝜎
 (𝑦 −  𝜇)  

Which equals zero when �̂� = 𝑦 

Now in our simple linear regression model instead of  𝑌 ~ 𝑁(𝜇, 𝜎 ) we now have 

 𝑌 ~ 𝑁(𝛽 + 𝛽 𝑥 , 𝜎 ) and we seek to estimate β0 and β1 by MLE. 

Now the likelihood function becomes a function of the two model parameters rather than of the 
normal mean 

𝐿(𝛽 , 𝛽 , 𝑦 ) =  
1

𝜎 (2𝜋) /
exp −

1

2𝜎
 (𝑦 −  𝜇𝛽 + 𝛽 𝑥 , )   

 

And the likelihood and the log likelihood are maximised when − ∑  (𝑦 −  𝜇𝛽 + 𝛽 𝑥 , )  is 
maximised. Note that this is exactly the same place where ∑  (𝑦 −  𝜇𝛽 + 𝛽 𝑥 , )  is minimised, 
which was precisely what we did when we found parameter estimates by least squares. 

Therefore in the simple linear regression model, the least squares estimators of β0 and β1 are the 
same as the maximum likelihood estimators. 

 

  


