6 Matrix approach to Simple Linear Regression

6.1 Re-writing the model in matrix form

Simple linear regression models can also be fitted using matrix approaches. We can think of the
previous simple linear regression model based on n observations for (x; yi) as a set of n equations:

Y11= Pot+ Pix1t+ &

V2= Bo+ Brxz + &

Yo = Po+ Bixn+ &
Now these same n equations can be re-written using matrices and vectors.
If,

e Yisa(nx1) vector of observations y;

e Xis a (nx2) matrix called the design matrix where the first column is a series of 1 and the
second column is the set of observations x;

e Bisa(2x1) vector of the unknown parameters 3, and 5,

then the n equations can be rewritten
Y=XB+ ¢

This way of writing the simple linear model is sometimes called the General Linear Model (but care is
needed here not to confuse that terminology with Generalised Linear Modelling or GLM which is a
different form of statistical modelling you will encounter in later statistics modules).

Now Y and ¢ here are random vectors, that is they are vectors whose elements are random
variables. Before we can fit the simple linear regression model in matrix form we need to cover
some properties of random vectors and also introduce the Multivariate Normal Distribution as a
more general case of the usual Normal Distribution used so far.

6.2 Random Vectors

The first property of random vectors we will need is that the expected value of a random vector is
the vector of expected values of the components of that random vector.

Soifz = (zq,..,2,)" isarandom vector then

Z1 E[z]
Elz] =E| 2 |= |\E[€2]/|
Zn E[Zn]

We also have properties for expectation of linear transformations of random vectors which are
analogous to the properties for single random variables. So if a is a constant, b is a constant vector,
and A, B are matrices of constants, then
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e Elaz+b]l=aE[z]+ Db
o [E[Az] = AE|z]
e E[zTB]= E[z]"B

With random vectors, variances and covariances of the random variables z; together form the
dispersion matrix sometimes called the variance-covariance matrix.

var(z;) - cov(zy,2,)
Var(z) = ( : : >
cov(zy,z1) - var(z,)
e Var(z) canalso be expressed as E[(z — E[z])(z — E[z])T]
e the dispersion matrix is symmetric since cov(zi, Zj) = cov(zj, Zi)
e if all of the z; are uncorrelated all COU(Zi, zj) =0 and hence the dispersion matrix is diagonal
with the variances
e if Aisa matrix of constants then Var(Az) = A Var(z) AT

6.3 The Multivariate Normal Distribution

MTH5129 Probability & Statistics Il introduced the Bivariate Normal Distribution. We will now extend
this to a general case where there are more than two random variables, known as the Multivariate
Normal Distribution.

A random vector z has a multivariate normal distribution if its probability density function (pdf) can
be written in the form

1
f2) = exp (-5 (= WYz - W)

1
(2m)"/2,/det(V)
where,

e vector u is the mean of z
e Vs the dispersion matrix of z
o det(V) is the determinant of V

With the multivariate normal distribution we typically use the notation z ~ N,, (i, V)

6.4 Least Squares Estimation using matrices

We are now ready to consider least squares estimation in the general linear model using matrices.
Our goal is to find B a (2x1) vector with the least squares estimates of the model parameters 3, and

B

When we estimated parameters 8, and 3, in the simple linear regression model before we solved
the two simultaneous “normal equations” found from taking the derivative of the equation for the
sum of squares of errors with respect to each of the two parameters. In matrix form and with our
general linear model above, the normal equations become,

X"y = X"XB
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Now as long as XT X is invertible, that is its determinant is not zero, then there is a unique solution
to the matrix form normal equations given by

B=(X"x)"'xTy

In the simple linear regression model,

therefore

and

XTx =

oYy
in ng

which means that the determinant of XT X is

2
|XTX| =nle-2— (in) =nS, #0

hence there is a solution to the normal equations.

The inverse of XTX is given by

x2 —Zx- 1 _
(XTx)—l — 1 Z : . — i —le-z —X
nSxx _le n Sxx X

which means we now have all the components we need to solve the normal equations in matrix
form.

B=(X"X)"'X"y
~ 1 1 2 _g Z}’i
£= g <nzfx 1x> in Vi

:LGZ’C?Z}’i—fzxw’i )zL(nyx_fsxy)zc_’_Ef)
XXiYi— XN Vi B

=)

Sxx Sxx Sxy

which is identical to the previous result for f?; and BI in the simple linear regression model not in
matrix form.
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Then the fitted values in matrix form are then,
;= x[B= Po+ Pix;
and the Residual Sum of Squares in matrix form is
SSg=y"y— B'X"y
which if you complete all the matrix multiplication gives

(Sxy)?

SSg = Syy — BiSxy = Syy — 5
XX

6.5 Properties that follow from the matrix approach

There follows a number of theorem and lemmas that flow from the matrix approach parameters and

residuals which we will present here.

(a) The least squares estimator B is an unbiased estimator of B that is E[ﬁ] =f

(b) Var[p] = 0% (X"X)™

(c) If,Y=XB+ eand e~ N,(0,52I) then B ~ N,(B, o (XTX)™ 1)

(d) The vector of fitted values, fi. =¥ = XJB can be written in the form fi = HY where H is

called the hat matrix and is givenby H = X (XTX)'1 XT and H has the two properties that

H = HT and HH = H (this second property is called an indempotent matrix).

(e

~

(f) Var[e] = o*(I —H)

(8) The sum of squares of the residuals is YT (I — H)Y

(h) The elements of the residual vector e sum to zero, thatis Y/, e; = 0

(i) Because of the result (h) above and all the e; sum to zero, we also have %Z 171 =Y

The centred form of the simple linear regression model can also be written in matrix or general
linear form. From before the centred formwasy; = a+ B(x; — x) + ¢

If the residual vectorise =Y — Y =Y — HY = (I — H)Y then E[e] = 0
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Now in matrix form and centred we use

and

and the results which follow are

and

5= (s)
a=y
joSo

var[@] = o%/n

. a?
var[ﬁ] = E

cov[&, ,@] =0

This last result, that @ and /? are uncorrelated, can make this centred form useful in certain areas of

practical work.
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6.6 Maximum Likelihood Estimation

So far, we have used least squares estimation to find our model parameter estimators ff There are
other ways of finding estimates for parameters in a model and we will now consider one here that is
widely used beyond the simple linear regression model. This is Maximum Likelihood Estimation
(MLE) which you will encounter in a number of different contexts and with various probability
distributions, in later statistics modules.

Let us say we have a set of n observations Y3, Y, ... Yo Which are assumed to be independent
observations which all come from the same probability distribution.

Now let us say that the probability distribution from which these are assumed to come has a
probability density function f(y;) which has a parameter 6 so that the pdf can be written f(y;|6).
The parameter 6 is unknown and we wish to estimate it by Maximum Likelihood Estimation.

The maximum likelihood estimator of @ is that value of 8 which maximises the joint probability that
the n observations occur. To find this probability to maximise we develop something called the
Likelihood function which is usually written L(8, y) or sometimes just L(6) and is a function of 8.

Loy = | [roue
i=1

And for discrete observations this becomes

n
L@y = | [Prei=yiie)
i=1
The maximum likelihood estimator written @ is that value of 8 which maximises the Likelihood
function L(8,y).

Once again, we will use calculus to find the estimator. In least squares estimation we differentiated
the sum of squares equation with respect to the model parameters o and 31 and set to zero to find
a minimum. Here we will differentiate the Likelihood function with respect to the parameters and
set to zero to find a maximum.

In most cases of MLE for probability distributions it is easier to take the log of the likelihood function

and differentiate log L(6,y) rather than L(8, y). The 8 that maximises log L(8,y) will be the same
as the one that maximises L(6,y).

Before we look at MLE for the Normal distribution and its application to the simple linear regression
model, let us look at MLE for a more straightforward probability distribution, the Binomial.

Let us say that we have n binomial trials where y; = 1 if the /" trial is a success and y; = 0
otherwise.

Let the probability of a success be p (which is unknown and we seek to estimate from the n
observations). We seek the Maximum Likelihood Estimator of p the Binomial success parameter.

If y = Y, y; thatis the total number of successful trials,

Then the Likelihood function is

L(P) = L(y1 ynlp) = pY(]_ — p)n—y
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And we seek p which is the value of p that maximises L(p) by differentiating and setting to zero.
As L(p) is a product of functions, it will be easier to differentiate log L(p)

logL(p) =log(p”(1 —p)"*™) = ylog(p) + (n — y)log (1 —p)
And

dlogL(p) 1 ( ) 1
—— —-——(n — —_—
dp Y Y15

If we set this to zero and solve for p

1 ( ) 1 0
——n—- et
yp yl—p

y n—y
P 1-p "
y1-p)=m—-y)p
y=np
5o Y
n

So the MLE for Binomial parameter p is the proportion of observed trials that are successful.

To complete this we should take second derivatives to see that we have found a maximum not a
minimum for the log likelihood.

The Binomial example highlights one of the key properties of (and advantages of) maximum
likelihood estimators. With this Binomial case we would expect the quality of the estimate to

increase with sample size n. Statistically we say that the estimator has strong asymptotic properties,
thatisasn > oo

In particular, maximum likelihood estimators are:

e Asymptotically unbiased
e Normally distributed
e Achieve the smallest variance possible.

But the Binomial example also highlights the key weakness

e At small n the estimator can be biased
e In general the asymptotic properties may not apply at smaller sample sizes.

We can now move to MLE in the Normal distribution which we will need to apply maximum
likelihood in the simple linear regression model.

For a normal distribution with mean p and variance 2 we can estimate u by MLE. We begin with
the Normal pdf

O _ 1 (_L _ 2)
fyu)—mfz—new 2Uz(y D)

34



And so the likelihood function is

Lwy) =

WGXP (_T;Z - M)Z)

And taking logs

logL = —log( ”(2ﬂ)2 z - w?

Differentiating

dloglL
e P at

Which equals zero when i = y
Now in our simple linear regression model instead of Y;~ N(u, 0%) we now have
Y;~ N(By + B1x;,0%) and we seek to estimate Bo and B1 by MLE.

Now the likelihood function becomes a function of the two model parameters rather than of the
normal mean

1 1
L(Bo, Br,¥i) = o 2myz &P (‘mz i — 1bo +.81xi»)2)

And the likelihood and the log likelihood are maximised when — ¥ (y; — ufy + B1xi,)? is
maximised. Note that this is exactly the same place where Y. (y; — uBo + f1x;,)? is minimised,
which was precisely what we did when we found parameter estimates by least squares.

Therefore in the simple linear regression model, the least squares estimators of Bo and B;are the
same as the maximum likelihood estimators.
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