Tutorial 4
(6) m_{0}. $\Rightarrow m^{u} m_{0} / 2 \sim h^{h}$
4-mumenta before and after:
Before: $\bar{P}_{0}=m_{0}(1,0,0,0)$
after:

$$
\begin{aligned}
& \bar{P}_{1}=\frac{m_{0}}{2} \gamma(u)(1,-u, 0,0) \\
& \bar{P}_{\gamma}=\left(h_{v}, h v, 0,0\right)
\end{aligned}
$$

Consecration of 4-momentum:

$$
\bar{P}_{0}=\bar{P}_{1}+\bar{P}_{r}
$$

The t and x components of the consewation equation give:

$$
\begin{aligned}
m_{0} & =\frac{m_{0}}{2} \gamma(u)+h v \\
0 & =-\frac{m_{0}}{2} \gamma(u) u+h v
\end{aligned}
$$

Subtracting the two equations gives:

$$
\begin{aligned}
1 & =\frac{1}{2} \gamma(u)(1+u) \\
& =\frac{1}{2} \sqrt{\frac{1+u}{1-u}} \quad \Rightarrow u=\frac{3}{5}
\end{aligned}
$$

This gives $\gamma(u)=\frac{1}{\sqrt{1-u^{2}}}=\frac{5}{4}$

Using this result in the first equation gives:

$$
\begin{aligned}
m_{0} & =\frac{m_{0}}{2} \frac{5}{4}+h v \\
& =\frac{5}{8} m_{0}+h v \\
\Rightarrow h v & =\frac{3}{8} m_{0}
\end{aligned}
$$

(10)
a)

The monaing 4-mommala are

$$
\begin{aligned}
& P_{1}=m_{p} \gamma_{r}(1, v, 0,0) \\
& P_{2}=m_{p} \gamma_{N}(1,-v, 0,0) \\
& P_{3}=M_{H}(1,0,0,0)
\end{aligned}
$$

Connewation of mangy emphas:

$$
\begin{aligned}
& 2 m_{p} \gamma_{v}=M_{H}=125 \mathrm{mp} \\
& \rightarrow \gamma_{N}=\frac{125}{2}=\frac{1}{\sqrt{1-v^{2}}} \rightarrow 1-v^{2}=\left(\frac{2}{125}\right)^{2} \\
& v=\sqrt{1-\left(\frac{2}{125}\right)^{2}}=0.99987
\end{aligned}
$$

b) Bepre:

$$
\begin{aligned}
& P_{1}=m_{p} \gamma_{r}\left(1, v \cos \theta_{1},-v \sin \theta_{1}, 0\right) \\
& P_{2}=m_{p} \gamma_{r}\left(1, r \cos \theta_{2}+v \sin \theta_{2}, 0\right)
\end{aligned}
$$

Geta: $P_{3}=M_{n t} \gamma_{n}(1, u, 0,0)$
Consewation of monuations along thes y aus
implies $\theta_{1}=\theta_{2}$.
Conscavation of momanturn along the x avess imphin:

$$
\begin{aligned}
& 2 m_{p} \gamma_{r} \cos \theta_{1}=M_{H} \gamma_{u} u \\
& 2 \gamma_{r} \cos \theta=125 \gamma_{u} u \\
& \cos \theta_{1}=\frac{125 \gamma_{u} u}{2 \gamma_{r}}=u=\frac{\sqrt{3}}{2} \rightarrow \theta=\frac{\pi}{6}=30^{\circ}
\end{aligned}
$$

Conocoration of mays: $2 m_{p} \gamma_{r}=M_{H} \gamma_{n}=125 \mathrm{mp} \gamma_{a}$

$$
\begin{aligned}
& \rightarrow 2 \gamma_{r}=125 \gamma_{u} \\
& \Rightarrow v=\frac{6 \sqrt{434}}{125}=0.999968 \ldots
\end{aligned}
$$

(11)

$$
\text { a) } \begin{aligned}
& {\left[X^{\prime} y^{\prime}\right](f)=X(Y(f))-Y(X(f)) } \\
= & X^{b} \partial_{b}\left(y^{a} \partial_{a} f\right)-y^{b} \partial_{b}\left(X^{a} \partial_{a} f\right) \\
= & {\left[X^{b}\left(\partial_{b} y^{a}\right)-y^{b}\left(\partial_{b} x^{a}\right)\right] \partial_{a} f } \\
+ & (\underbrace{\left.x^{b} y^{a}-y^{b} X^{a}\right)} \underbrace{\partial_{a} \partial_{b} f}
\end{aligned}
$$

anti-symmetric $a \leftrightarrow b$ symmetric $a \leftrightarrow b$

$$
=[x, y]^{b} \partial_{b} f
$$

foom which we ilentify

$$
[x, y]^{a}=x^{b} \partial_{b} y^{a}-y^{b} \partial_{b} x^{a}
$$

b) - Dinect calculation

$$
\begin{aligned}
& {[x, y]^{a^{\prime}}=x^{b^{\prime}} \partial_{b^{\prime}} y^{a^{\prime}}-(x \leftrightarrow y)} \\
& =\frac{\partial x^{b \prime}}{\partial x^{b}} x^{b} \frac{\partial x^{c}}{\partial x^{b}} \partial_{c}\left(\frac{\partial x^{a^{\prime}}}{\partial x^{a}} y^{a}\right)-(x \leftrightarrow y)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\partial x^{a}}{\partial x^{a}} x^{c} \partial_{c} y^{a}+x^{c} y^{a} \frac{\partial^{2} x^{a}}{\partial x^{c} \partial x^{a}} \\
& -\left(\frac{\partial x^{a}}{\partial x^{a}} y^{c} \partial_{c} x^{a}+y^{c} x^{a} \frac{\partial^{2} x^{a}}{\partial x^{c} \partial x^{a}}\right) \\
& =\frac{\partial x^{a}}{\partial x^{a}}[x, y]^{a}
\end{aligned}
$$

- Alterative:

Note that

$$
[x, y]^{a}=x^{b} \nabla_{b} y^{a}-y^{b} \nabla_{b} x^{a}
$$

since the terns with the Chistoffels cancel. Then, since $[X, Y]$ can be written in a manifestly covariant way it will transform as a vector.

