First coursework due by 9am Mon 19 Feb Submit on amplus.

Recap quiz

Given on LP what is on extreme point solution

- (i) intuitively/geometrically?
- (ii) formally ?

What are the 3 main steps in transforming an LP to standard inequality form?

Standard Mux CT & 3
inequality form

Subto A>C S b

200

- How to transform any linear program to standard inequality form
- Ofer each variable x_i if sign constraint is $x_i 7.0$
 - $x_i \le 0$ replace x_i with $\overline{x_i} > 0$ where $x_i = -\overline{x_i}$ x_i unrestricted replace x_i with $x_i^{\dagger} x_i^{-}$ with $x_i^{\dagger} > 0$ $x_i^{\dagger} > 0$
- Olf goal is min cto replace with max (-ctoo)
 minimizing a for is save as maximising negative of that function
- 3 For each constraint, if constraint is $a^{T}x \leq b$ $a^{T}x \leq b$ $a^{T}x \leq b$ $a^{T}x \leq b$ $a^{T}x = b$ replace with $(-a)^{T}x \leq -b$ $a^{T}x = b$ replace with two $a^{T}x \leq b$ $a^{T}x \leq b$ $a^{T}x \leq b$

Task: 1i) Give standard eauation form
(ii) Write down feasable solution of standard equation form
that correspond to X, Y, Z

standard inequality fam

maximist
$$2x_1 + 3x_2$$

sub to $-x_1 + x_2 \le 3$ ()
 $x_1 - x_2 \le 4$ (2)
 $x_1 + x_2 \le 6$ (3)
 $x_{1,1}x_{2,1}$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

Recap quiz

Given on LP what is on extreme point solution

- (i) intuitively/geometrically?
- (ii) formally?

Given on LP in standard equation form

Max $C^{T}Z$ Subject to Az = b $Z^{T}Q$

What is an optimal solutions

- (i) intuitively?
- (ii) formally?

Suppose $x \le 100$ and $y \le 100$ and average of x and y is exactly 100. What can we say about x and y?

Example

$$\leq = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix} \qquad \underline{b} = \begin{pmatrix} 1 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$

All solutions below are feasible (check). Which are basic feasible?

(a)
$$\begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$$
 (b) $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1/2 \\ 2 \\ 1/2 \end{pmatrix}$

Lin alg recop.

Q If A = (G G G G G G) and Y = (G G) and AY = QWhat can we say about timear dependence/independence of columns G = (G G G), G = (G G) and G = (G G) and G = (G G)

standard inequality farm

maximist $2x_1 + 3x_2$

Sub to
$$-x_1 + x_2 \leq 3$$
 (1)

$$x_1 + x_2 \leq 6 3$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

Standard equation form

maximial 2x, +3xz

Sub to
$$-x_1 + x_2 + s_1 = 3$$

 $x_1 - x_2 + s_2 = 4$

$$x_1 + x_2 + s_3 = 6$$

$$x_{1}, x_{2}, s_{1}, s_{2} > 0$$
.

$$\begin{array}{c} \chi \\ \chi_{1} \\ \chi_{2} \\ S_{1} \\ S_{2} \\ S_{3} \end{array} = \begin{pmatrix} 1 \\ 1 \\ 3 \\ 4 \\ 4 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \\ 3 \\ 4 \\ 0 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \\ 7 \\ 0 \\ 0 \end{pmatrix}$$

$$A = \begin{pmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{pmatrix} \qquad b = \begin{pmatrix} 3 \\ 4 \\ 6 \end{pmatrix}$$