First coursework due by 9 am Man 19 Feb Submit on QMplus.

Recap quiz
Given an LP what is on extreme point solution
(i) intuitively/geometrically?
(ii) formally?

What are the 3 main steps in transforming an LP to standard inequality form?
Standard inequality form
$\max \underline{c}^{\top} x$
sub to $A x \leq b$

How to transform any linear program to standard inequality form
(1) For each variable x_{i} it sign constraint is
$x_{i} \geqslant 0$
$x_{i} \leq 0$ replace x_{i} with $\overline{x_{i}} \geqslant 0$ where $x_{i}=-\overline{x_{i}}$
x_{i} unrestricted replace x_{i} with $x_{i}^{+}-x_{i}^{-}$
with $x_{i}^{+} \geqslant 0 \quad x_{i}^{-} \geqslant 0$
(2) If goal is min $\underline{c}^{\top} \underline{x}$ replace with max $(-c)^{\top} \underline{x}$ minimizing f_{n} is sane as maximising negative of that Auction
(3) For each constraint, if constraint is

$$
\underline{a}^{\top} x \leqslant b
$$

$\underline{a}^{\top} \underline{x} \geqslant b$ replace with $(-\underline{a})^{\top} x \leq-b$
$\underline{a^{\top}} \underline{x}=b$ replace with two

$$
\begin{aligned}
\underline{a}^{\top} \underline{x} & \leqslant \underline{b} \\
(-\underline{a})^{\top} \underline{x} & \leqslant-b
\end{aligned}
$$

Task: (i)Give standard equation form
(ii) Write down feasable solution of standard equation form that correspond to x, y, z
standard inequality fam
maximise $2 x_{1}+3 x_{2}$
sub to $-x_{1}+x_{2} \leq 3$ (1)

$$
\begin{gather*}
x_{1}-x_{2} \leq 4 \tag{2}\\
x_{1}+x_{2} \leq 6 \\
x_{1}, x_{2} \geq 0
\end{gather*}
$$

$$
\begin{array}{ccc}
x & y & z \\
\binom{x_{1}}{x_{2}}=\binom{1}{1}\binom{3}{3}
\end{array}
$$

Recap quiz
Given an LP what is an extreme point solution
(i) intuitively/geometrically?
(ii) formally?

Given on LP in standard equation form

$$
\begin{aligned}
& \max \frac{c^{\top} x}{} \\
& \text { subject to } \quad A \underline{x}=\underline{b} \\
& \underline{x} \geqslant \underline{0}
\end{aligned}
$$

What is an optimal solution
(i) intuitively?
(ii) formally?

Suppose $x \leq 100$ and $y \leq 100$
and average of x and y is exactly 100 . What con we say about x and y ?

Example
$\max x_{1}+x_{2}+x_{3}$
sub to $x_{1}+\quad+x_{3}=1$

$$
\begin{aligned}
& x_{2}+2 x_{3}=3 \\
& x_{1}, x_{2}, x_{3} \geqslant 0
\end{aligned}
$$

$$
\leq=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right) \quad \underline{b}=\binom{1}{3}
$$

All solutions below are feasible (check). Which are basic feasible?
(a) $\left(\begin{array}{l}1 \\ 3 \\ 0\end{array}\right)$
(b) $\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$
(c) $\left(\begin{array}{c}1 / 2 \\ 2 \\ 1 / 2\end{array}\right)$

Lin alg recap.
Q If $A=\left(\underline{C}_{1} \underline{C_{2}} \underline{C_{3}} \underline{C_{4}}\right)$ and $\underline{v}=\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right)$ and $A \underline{v}=\underline{0}$ What con we say about tinear dependence/independence of columns $c_{1}, c_{2}, c_{2}, c_{4}$ of A.

standord inequality fam
maximire $2 x_{1}+3 x_{2}$
sub to $-x_{1}+x_{2} \leq 3$ (1)
$x_{1}-x_{2} \leq 4$
$x_{1}+x_{2} \leq 63$

$$
x_{1}, x_{2} \geqslant 0
$$

$$
\begin{gathered}
x \\
\binom{x_{1}}{x_{2}}=\binom{1}{1}\binom{3}{3}
\end{gathered}
$$

Standord equation form
maximial $2 x_{1}+3 x_{2}$
Sub to

$$
\begin{aligned}
-x_{1}+x_{2}+s_{1} & =3 \\
x_{1}-x_{2}+s_{2} & =4 \\
x_{1}+x_{2}+s_{3} & =6
\end{aligned}
$$

$$
x_{1}, x_{2}, s_{1}, s_{2} \geqslant 0 .
$$

$$
\begin{array}{r}
\left(\begin{array}{l}
x \\
x_{1} \\
x_{2} \\
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
3 \\
4 \\
4
\end{array}\right)\left(\begin{array}{l}
3 \\
3 \\
3 \\
4 \\
0
\end{array}\right)\left(\begin{array}{l}
5 \\
1 \\
7 \\
0 \\
0
\end{array}\right) \\
A=\left(\begin{array}{ccccc}
-1 & 1 & 1 & 0 & 0 \\
1 & -1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1
\end{array}\right) \quad \underline{b}=\left(\begin{array}{l}
3 \\
4 \\
6
\end{array}\right)
\end{array}
$$

