MTH6105 - Algorithmic Graph Theory
Problem Sheet 3
F. Fischer

You are expected to attempt all exercises before the seminar and to actively participate in the seminar itself.

1. Show that a graph G is a tree if and only if it contains no loops and a unique $u-v$-path for every $u, v \in V(G)$.
(a) For the direction from right to left, consider a graph G without loops and with unique $u-v$-paths, and show that G is connected and acyclic.
(b) For the direction from left to right, show that if T is a tree, then it contains unique $u-v$-paths.

Solution:

(a) Assume that G contains no loops and a unique $u-v$-path for every $u, v \in V$. Observe that this means that G is connected, and assume for contradiction that G contains a cycle $v_{1} e_{1} v_{2} e_{2} \ldots v_{m} e_{m} v_{1}$. Then $v_{1} e_{1} v_{2} e_{2} \ldots v_{m}$ and $v_{1} e_{m} v_{m}$ are distinct $v_{1}-v_{m}$-paths in G, contradicting the assumption that such paths are unique. Thus G is connected and does not contain any cycles, i.e., it is a tree.
(b) Assume that G is a tree, and consider $u, v \in V(G)$. By definition G is connected, so it contains at least one $u-v$-path. Assume for contradiction that it contains two distinct $u-v$-paths $s_{0} s_{1} s_{2} \ldots s_{m}$ and $t_{0} t_{1} t_{2} \ldots t_{\ell}$. Let $i \in\{0, \ldots, m-2\}$ be the smallest value such that $s_{i+1} \neq t_{i+1}$, and $j \in\{i+1, \ldots, m\}$ the smallest value such that $s_{j} \in\left\{t_{i+1}, t_{i+2}, \ldots, t_{\ell}\right\}$. Then v_{i+1} is the first vertex where the first path diverges from the second path, and v_{j} the first vertex thereafter where the two paths converge again; such vertices must exist because the paths are distinct but both start at u and end at v. Let $k \in\{i+1, i+2, \ldots, \ell\}$ such that $s_{j}=t_{k}$. Then $s_{i} s_{i+1} \ldots s_{j} t_{k-1} t_{k-2} \ldots t_{i+1} t_{i}$ is a cycle in G, which contradicts the assumption that G is a tree.
2. (a) Give the Prüfer code of the following tree.

(b) Draw the tree with Prüfer code (1, 2, 3, 2, 1)

Solution:

(a) The tree has Prüfer code $1,1,1,4,2$.
(b) The tree looks as follows.

3. For $n \in\{0,1,2,3, \ldots\}$, let Q_{n} be the simple graph with

$$
\begin{aligned}
& V\left(Q_{n}\right)=\{X: X \subseteq[n]\} \\
& E\left(Q_{n}\right)=\left\{X Y: X, Y \in V\left(Q_{n}\right),|(X \backslash Y) \cup(Y \backslash X)|=1\right\} .
\end{aligned}
$$

(a) Draw Q_{0}, Q_{1}, Q_{2}, and Q_{3}.
(b) Determine $d_{Q_{13}}(\{1,3\})$.
(c) Give all values of n for which Q_{n} is a tree. Justify your answer.
(d) Show that Q_{n} is connected for all n. You may want to consider $X, Y \in V\left(Q_{n}\right)$ such that $|(X \backslash Y) \cup(Y \backslash X)|=k$, and show existence of an $X-Y$-path by induction on k.

Solution:

(a) The graphs look as follows.

(b) $d_{Q_{13}}(\{1,3\})=\left|N_{Q_{13}}(\{1,3\})\right|$

$$
\begin{aligned}
& =|\{\{1,3\} \backslash\{x\}: x \in\{1,3\}\} \cup\{\{1,3\} \cup\{x\}: x \in[13] \backslash\{1,3\}\}| \\
& =13
\end{aligned}
$$

(c) As we can see above, Q_{0} and Q_{1} are connected and acyclic, and thus trees. If $n \geq 2, Q_{n}$ contains the cycle $\emptyset,\{1\},\{1,2\},\{2\}, \emptyset$ and is therefore not a tree.
(d) Let $n \in\{0,1,2,3, \ldots\}$. For $X, Y \in V\left(Q_{n}\right)$, let $X \triangle Y=(X \backslash Y) \cup(Y \backslash X)$ denote the symmetric difference of X and Y. Consider $X, Y \in V\left(Q_{n}\right)$, and let $k=|X \triangle Y|$. We prove by induction on k that there exists an $X-Y$-walk in Q_{n}. If $k=1$, then $X Y \in E\left(Q_{n}\right)$, so there exists an $X-Y$-walk in Q_{n}. Now assume that $k \geq 2$. Let $z \in X \triangle Y$ and $Z=X \triangle\{z)$. Then $Z \in E\left(Q_{n}\right)$. Moreover, $|X \triangle Z|=1$ and $|Z \triangle Y|=k-1$, so by the induction hypothesis exists an $X-Z$-walk and a $Z-Y$-walk in Q_{n}. These two walks can be combined into an $X-Y$-walk. Since X and Y were chosen arbitrarily, Q_{n} is connected.

