F. Fischer

You are expected to **attempt all exercises** before the seminar and to **actively participate** in the seminar itself.

- 1. Show that a graph G is a tree if and only if it contains no loops and a unique u-v-path for every $u,v\in V(G)$.
 - (a) For the direction from right to left, consider a graph G without loops and with unique u-v-paths, and show that G is connected and acyclic.
 - (b) For the direction from left to right, show that if T is a tree, then it contains unique u-v-paths.

Solution:

- (a) Assume that G contains no loops and a unique u-v-path for every $u, v \in V$. Observe that this means that G is connected, and assume for contradiction that G contains a cycle $v_1e_1v_2e_2\ldots v_me_mv_1$. Then $v_1e_1v_2e_2\ldots v_m$ and $v_1e_mv_m$ are distinct v_1-v_m -paths in G, contradicting the assumption that such paths are unique. Thus G is connected and does not contain any cycles, i.e., it is a tree.
- (b) Assume that G is a tree, and consider $u, v \in V(G)$. By definition G is connected, so it contains at least one u-v-path. Assume for contradiction that it contains two distinct u-v-paths $s_0s_1s_2\ldots s_m$ and $t_0t_1t_2\ldots t_\ell$. Let $i\in\{0,\ldots,m-2\}$ be the smallest value such that $s_{i+1}\neq t_{i+1}$, and $j\in\{i+1,\ldots,m\}$ the smallest value such that $s_j\in\{t_{i+1},t_{i+2},\ldots,t_\ell\}$. Then v_{i+1} is the first vertex where the first path diverges from the second path, and v_j the first vertex thereafter where the two paths converge again; such vertices must exist because the paths are distinct but both start at u and end at v. Let $k\in\{i+1,i+2,\ldots,\ell\}$ such that $s_j=t_k$. Then $s_is_{i+1}\ldots s_jt_{k-1}t_{k-2}\ldots t_{i+1}t_i$ is a cycle in G, which contradicts the assumption that G is a tree.
- 2. (a) Give the Prüfer code of the following tree.

(b) Draw the tree with Prüfer code (1, 2, 3, 2, 1)

Solution:

- (a) The tree has Prüfer code 1, 1, 1, 4, 2.
- (b) The tree looks as follows.

3. For $n \in \{0, 1, 2, 3, \dots\}$, let Q_n be the simple graph with

$$V(Q_n) = \{X : X \subseteq [n]\},$$

$$E(Q_n) = \{XY : X, Y \in V(Q_n), |(X \setminus Y) \cup (Y \setminus X)| = 1\}.$$

- (a) Draw Q_0 , Q_1 , Q_2 , and Q_3 .
- (b) Determine $d_{Q_{13}}(\{1,3\})$.
- (c) Give all values of n for which Q_n is a tree. Justify your answer.
- (d) Show that Q_n is connected for all n. You may want to consider $X, Y \in V(Q_n)$ such that $|(X \setminus Y) \cup (Y \setminus X)| = k$, and show existence of an X-Y-path by induction on k.

Solution:

(a) The graphs look as follows.

(b)
$$d_{Q_{13}}(\{1,3\}) = |N_{Q_{13}}(\{1,3\})|$$

= $|\{\{1,3\} \setminus \{x\} : x \in \{1,3\}\} \cup \{\{1,3\} \cup \{x\} : x \in [13] \setminus \{1,3\}\}|$
= 13

(c) As we can see above, Q_0 and Q_1 are connected and acyclic, and thus trees. If $n \geq 2$, Q_n contains the cycle \emptyset , $\{1\}$, $\{1,2\}$, $\{2\}$, \emptyset and is therefore not a tree.

(d) Let $n \in \{0, 1, 2, 3, ...\}$. For $X, Y \in V(Q_n)$, let $X \triangle Y = (X \setminus Y) \cup (Y \setminus X)$ denote the symmetric difference of X and Y. Consider $X, Y \in V(Q_n)$, and let $k = |X \triangle Y|$. We prove by induction on k that there exists an X-Y-walk in Q_n . If k = 1, then $XY \in E(Q_n)$, so there exists an X-Y-walk in Q_n . Now assume that $k \geq 2$. Let $z \in X \triangle Y$ and $Z = X \triangle \{z\}$. Then $Z \in E(Q_n)$. Moreover, $|X \triangle Z| = 1$ and $|Z \triangle Y| = k - 1$, so by the induction hypothesis exists an X-Z-walk and a Z-Y-walk in Q_n . These two walks can be combined into an X-Y-walk. Since X and Y were chosen arbitrarily, Q_n is connected.