
MTH 4104 Example Sheet I Solutions Shu SASAKI

I-1.
186 = 132 · 1 + 54
132 = 54 · 2 + 24
54 = 24 · 2 + 6
24 = 6 · 4 + 0

hence gcd(186, 24) = 6.

6 = 54 + (−2) · 24
= 54 + (−2)(132− 2 · 54)
= 5 · 54 + (−2) · 132
= 5 · (186− 1 · 132) + (−2) · 132
= 5 · 186 + (−7) · 132

hence (x, y) = (5,−7) does the job.

I-2. (a) By Euclid’s algorithm, gcd(272, 200) = 8. Also 272·(−11)+200·15 = 8. Multiplying
the equation through by 2, we get 272 · (−22) + 200 · 30 = 16. So (−22, 30) is a solution. (b)
Suppose that (x, y) is a pair of integers satisfying 272x + 200y = 4. By definition, gcd(272, 200)
divides the LHS, therefore it divides the RHS, i.e. 4. However, 8 does not divide 4 (inZ). Therefore
no such pair (x, y) exists.

I-3.
206 = 64 · 3 + 14
64 = 14 · 4 + 8
14 = 8 · 1 + 6
8 = 6 · 1 + 2
6 = 2 · 3 + 0

hence gcd(206, 64) = 2.

2 = 8− 1 · 6
= 8− 1 · (14− 1 · 8)
= 2 · 8− 1 · 14
= 2 · (64− 4 · 14)− 1 · 14
= 2 · 64− 9 · 14
= 2 · 64− 9 · (206− 3 · 64)
= (−9) · 206 + 29 · 64

hence (x, y) = (−9, 29) is one solution. To find another, we solve 206x + 64y = 0 (you will
see why). Since 206x = −64y, dividing both sides by 2, we get 103x = −32y. Therefore
(x, y) = (32r,−103r), as r ranges over Z, defines a solution for 206x + 64y = 0 for any r.

Let (x, y) be another solution for 206x + 64y = 2. By Euclid’s algorithm, we have found 206 ·
(−9)+29·64 = 2. Subtracting the latter from the former, we see that 206(x+9)+64(y−29) = 0,
i.e., (x+ 9, y− 29). By the analysis above, we then know that (x+ 9, y− 29) = (32r,−103r) for
some integer r. In other words, (x, y) = (−9 + 32r, 29− 103r).
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When r = 0, we recover (−9, 29). When r = 1, we get another solution (23,−74).

I-4. (a)
61 = 18 · 3 + 7
18 = 7 · 2 + 4
7 = 4 · 1 + 3
4 = 3 · 1 + 1

Using this, we see
1 = 4− 3 · 1

= 4− (7− 1 · 4)
= 2 · 4− 7
= 2 · (18− 2 · 7)− 7
= 2 · 18− 5 · 7
= 2 · 18− 5 · (61− 3 · 18)
= 17 · 18− 5 · 61

and therefore (x, y) = (−5, 18) is a solution.
(b) Let x and y be a solution for 61x + 18y = 0. In this case, 61x = −18y. Since 61 divides

the LHS, it divides the LHS. But gcd(61, 18) = 1, so 61 divides y. Let y = 61r for some integer r.
Similarly 18 divides the RHS and gcd(61, 18) = 1, it also divides x. Combining with y = 61r, we
deduce that x = −18r. In summary, if (x, y) is a solution for 61x+18y = 1, then it is of the form
(−18r, 61r) for some integer r. Conversely, any pair of the form (−18r, 61r) defines a solution
for the equation 61x + 18y = 1. In conclusion, the solutions for 61x + 18y = 1 are (−18r, 61r)
as ̊ ranges over Z.

(c) Let (x, y) be a pair of integers satisfying 61x+18y = 1. Subtracting 61 · (−5)+18 ·17 = 1
from it, we see that 61(x+5)+ 18(y− 17) = 0. As we know that (x+5, y− 17) = (−18r, 61r)
for some integer r, (x, y) = (−5 − 18r, 17 + 61r). Conversely, any pair of integers of the form
(−5− 18r, 17 + 61r), where r ranges over Z defines a solution for the equation 61x + 18y = 1.

I-5. (a) Let (x, y) be a pair of integers satisfying ax+by = 0. Then x = −by/a. TheRHS defines
an integer if and only if a/gcd(a, b) divides y. In other words, there exists an integer c such that
y = (−c)a/gcd(a, b). Plugging this back into the equation, we get x = cb/gcd(a, b). (b) Subtract-
ing ar+bs = gcd(a, b) from ax+by = gcd(a, b), we obtain a(x−r)+b(y−s) = 0. Using (a), we de-
duce (x−r, y−s) = (cb/gcd(a, b),−ca/gcd(a, b)), i.e. (x, y) = (r+cb/gcd(a, b), s−ca/gcd(a, b)).

I-6. By definition, gcd(b, c) divides b, and c, hence agcd(b, c) divides ab and ac. In other words,
agcd(b, c) (resp. −agcd(b, c)) is a common divisor of ab and ac if a > 0 (resp. a < 0). By definition,
agcd(b, c) 6 gcd(ab, ac) (resp. −agcd(b, c) 6 gcd(ab, ac)).

To prove the converse, observe firstly that gcd(ab, ac) divides ab and ac. On the other hand,
Bezout’s identity proves that there exist integers x and y such that bx+ cy = gcd(b, c). Multiplying
both sides by a, we obtain abx+acy = agcd(b, c). Since gcd(ab, ac) divides the LHS, it also divides
the RHS. Hence gcd(ab, ac) 6 agcd(b, c) (resp. gcd(ab, ac) 6 −agcd(b, c)) if a > 0 (resp. a < 0).

I-7. Suppose that there exists a pair of integers (x, y) satisfying ax + by = c. Since gcd(a, b)
divides both a and b, it divides the RHS of ax+ by = c. It therefore follows that it also divides the
RHS, i.e. c. Conversely, suppose that gcd(a, b) divides c. By Bezout’s identity, there exists a pair of
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integers (r, s) such that ar + bs = gcd(a, b). Hence (x, y) = (rc/gcd(a, b), bc/gcd(a, b)) defines
an integer solution for ax + by = c.

I-8. (a) Let a and b be positive integers. By the fundamental theorem of arithmetic, we

may write a =
∏
p

prp(a) and b =
∏
p

prp(b) where p ranges over the set of prime numbers, and

rp(a) and rp(b) are non-negative integers and are 0 for all but finitely many p. Then lcm(a, b) =∏
p

pmax(rp(a),rp(b)). (b) By comparison, gcd(a, b) =
∏
p

pmin(rp(a),rp(b)), hence gcd(a, b)lcm(a, b) =∏
p

pmax(rp(a),rp(b))+min(rp(a),rp(b)) =
∏
p

prp(a)+rp(b) =
∏
p

prp(a)
∏
p

prp(b) = ab. (c) Use euclid’s al-

gorithm to compute gcd(a, b). Compute lcm(a, b) by ab/gcd(a, b).

I-9. Let p be a prime number. We know: if p divides ab, then p divides either a or b. Repeatedly
apply this to the product of primes in S.

I-10. (a) IfN were a prime number, then it follows fromN ≡ −1mod 4 thatN would define
an element of S. However,N is defined to be clearly bigger than any element of S. Contradiction.
(b) If it were,N would be even. However,N ≡ −1mod 4, henceN ≡ −1 ≡ 1mod 2. (c) Suppose
that a prime number p in S dividesN . ThenN ≡ 0mod p. However, by definition,NS ≡ 0mod
p, hence N = 4NS − 1 ≡ 4 · 0 − 1 ≡ −1 mod p. Contradiction. (d) We have established in
(c) that every prime factor p of N is NOT congruent to −1 mod 4. This means it is congruent to
either 0, 1 or 2, mod 4. The case p ≡ 0 mod 4 can not occur (as it would mean that p is divisible
by 4 but p is a prime number), while p ≡ 2 mod 4 would force p = 2 and we have excluded this
case in (b). (e) Since the product of prime numbers ≡ 1 mod 4 is again congruent to 1 mod 4, it
follows from (d) that N ≡ 1 mod 4. However, N ≡ −1 mod 4 by definition. Contradiction. It
therefore follows that the running assumption that S is finite is false, i.e. S is infinite, i.e. there are
infinitely many prime numbers congruent to −1 mod 4.
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