MTH 4104 Example Sheet I Solutions Shu SASAKI

I-1.
186 = 132-1+54
132 = 54-2+24
54 = 24-2+6
24 = 6-4+40

hence ged(186,24) = 6.

6 = 544 (—2) 24
= 54+ (—2)(132 —2-54)
= 554+ (—2)-132
= 5-(186—1-132) + (=2) - 132
— 5-1864 (=7)- 132

hence (x,y) = (5, —7) does the job.

[-2. (a) By Euclid’s algorithm, ged(272,200) = 8. Also 272-(—11)4-200-15 = 8. Multiplying
the equation through by 2, we get 272 - (—22) 4200 - 30 = 16. So (—22, 30) is a solution. (b)
Suppose that (x,y) is a pair of integers satisfying 272x 4+ 200y = 4. By definition, ged (272, 200)
divides the LHS, therefore it divides the RHS, i.e. 4. However, 8 does not divide 4 (in Z). Therefore
no such pair (x,y) exists.

[-3.
206 = 64-3+14

64 = 14-4+38
14 = 8-1+6
8§ = 6-1+2
6 = 2-3+0

hence ged(206,64) = 2.

2 = 8—1-6
8—1-(14—1-8)
2.8—1-14
2.(64—4-14)—1-14
2.64—9-14

= 2.64—9-(206—3-64)
= (—9)-206+29 - 64

hence (x,y) = (—9,29) is one solution. To find another, we solve 206x + 64y = 0 (you will
see why). Since 206x = —64y, dividing both sides by 2, we get 103x = —32y. Therefore
(x,5) = (32r, —103r), as r ranges over Z, defines a solution for 206x + 64y = 0 for any 7.

Let (x,¥) be another solution for 206x + 64y = 2. By Euclid’s algorithm, we have found 206 -
(—9)+29-64 = 2. Subtracting the latter from the former, we see that 206(x+9)+64(y—29) = 0,
ie., (x+9,y — 29). By the analysis above, we then know that (x + 9,y — 29) = (32r, —103r) for
some integer 7. In other words, (x,y) = (=9 + 32r,29 — 103r).



When r = 0, we recover (—9,29). When 7 = 1, we get another solution (23, —74).

1-4. (a)
61 = 18-34+7
18 = 7-2+4
7T = 4-1+3
4 = 3-1+1
Using this, we see
1 = 4-3-1
= 4—(7T—-1-4)
= 2-4-7
= 2-(18=2-7)—7
= 2-18—5-7
= 2-18—-5-(61—3-18)
= 17-18-5-61

and therefore (x,y) = (=5, 18) is a solution.

(b) Let x and y be a solution for 61x 4+ 18y = 0. In this case, 61x = —18y. Since 61 divides
the LHS, it divides the LHS. But ged(61, 18) = 1, so 61 divides y. Let y = 617 for some integer 7.
Similarly 18 divides the RHS and ged(61, 18) = 1, it also divides x. Combining withy = 61r, we
deduce that £ = —187. In summary, if (x,) is a solution for 61x + 18y = 1, then it is of the form
(—18r,61r) for some integer 7. Conversely, any pair of the form (—18r,61r) defines a solution
for the equation 61x 4+ 18y = 1. In conclusion, the solutions for 61x 4+ 18y = 1 are (—18r,61r)
as’ ranges over Z.

(c) Let (x,) be apair of integers satistying 61x+ 18y = 1. Subtracting 61-(—5)+18-17 =1
from it, we see that 61(x +5) + 18(y — 17) = 0. As we know that (x + 5,y — 17) = (—18r,61r)
for some integer r, (x,y) = (=5 — 18,17 + 61r). Conversely, any pair of integers of the form
(—5 — 187,17 + 61r), where r ranges over Z defines a solution for the equation 61x 4 18y = 1.

[-5. (a) Let (x,y) be a pair of integers satistying ax+by = 0. Then x = —by/a. The RHS defines
an integer if and only if'@/ged(a, b) divides y. In other words, there exists an integer ¢ such that
y = (—c¢)a/ged(a, b). Plugging this back into the equation, we get x = ¢b/ged(a, b). (b) Subtract-
ingar+bs = ged(a, b) from ax+by = ged(a, b), we obraina(x—r)+b(y—s) = 0. Using (a), we de-
duce (x—r,y—s) = (¢b/ged(a, b), —ca/ged(a, b)), ie. (x,5) = (r+cb/ged(a, b),s—ca/gcd(a, b)).

[-6. By definition, ged(b, ¢) divides b, and ¢, hence aged (b, ¢) divides ab and ac. In other words,
aged (b, ¢) (resp. —aged(b, ¢)) is a common divisor of @b and acifa > 0 (resp. a < 0). By defiition,
aged(b, ¢) < ged(ab, ac) (vesp. —aged(b, ¢) < ged(ab, ac)).

To prove the converse, observe firstly that ged(ab, ac) divides ab and ac. On the other hand,
Bezout’s identity proves that there exist integers x and y such that bx+c¢y = ged(b, ¢). Multiplying
both sides by a, we obtain abx+acy = aged(b, ¢). Since ged(ab, ac) divides the LHS, it also divides
the RHS. Hence ged(ab, ac) < aged(b, ¢) (vesp. ged(ab, ac) < —aged(b,¢)) ifa > 0 (resp. a < 0).

[-7. Suppose that there exists a pair of integers (x,y) satisfying ax + by = ¢. Since ged(a, b)
divides both @ and b, it divides the RHS of ax + by = ¢. It therefore follows that it also divides the
RHS, i.e. ¢. Conversely, suppose that ged(a, b) divides ¢. By Bezout’s identity, there exists a pair of



integers (r,s) such that ar + bs = ged(a, b). Hence (x,y) = (r¢/ged(a,b), be/ged(a, b)) defines

an integer solution for ax + by = c.

[-8. (a) Let @ and b be positive integers. By the fundamental theorem of arithmetic, we
may write @ = Hpr”(a) and b = Hprp(b) where p ranges over the set of prime numbers, and

P
r,(a) and r,(b) are non-negative integers and are 0 for all but finitely many p. Then lem(a, b) =

HPWX (@ (®) (1) By comparison, ged(a, b) Hpmm (@n®) hence ged(a, b)lem(a, b) =

Hpmm rp(a),rp(b))+min(rp(a),rp(b)) Hprp (@)+7p(b) Hpr,; Hpr,,(b — ab. ) Use euclids al-

P
gorithm to compute ged(a, b). Compute lem(a, b) by ab / gcd(a b).

[-9. Let p be a prime number. We know: if p divides ab, then p divides either @ or b. Repeatedly
apply this to the product of primes in S.

[-10. (a) If N were a prime number, then it follows from N = —1 mod 4 that N would define
an clement of S. However, N is defined to be clearly bigger than any element of S. Contradiction.
(b) If it were, N would be even. However, N = —1 mod 4, hence N = —1 = 1 mod 2. (c) Suppose
that a prime number p in S divides N. Then N = 0 mod p. However, by definition, Ny = 0 mod
p,hence N = 4Ng—1=4-0—-1 = —1 mod p. Contradiction. (d) We have established in
(¢) that every prime factor p of N is NOT congruent to —1 mod 4. This means it is congruent to
either 0, 1 or 2, mod 4. The case p = 0 mod 4 can not occur (as it would mean that p is divisible
by 4 but p is a prime number), while p = 2 mod 4 would force p = 2 and we have excluded this
case in (b). (¢) Since the product of prime numbers = 1 mod 4 is again congruent to 1 mod 4, it
follows from (d) that N = 1 mod 4. However, N = —1 mod 4 by definition. Contradiction. It
therefore follows that the running assumption that S is finite is false, i.e. S is infinite, i.c. there are
infinitely many prime numbers congruent to —1 mod 4.



