I-1.

$$
\begin{aligned}
186 & =132 \cdot 1+54 \\
132 & =54 \cdot 2+24 \\
54 & =24 \cdot 2+6 \\
24 & =6 \cdot 4+0
\end{aligned}
$$

hence $\operatorname{gcd}(186,24)=6$.

$$
\begin{aligned}
6 & =54+(-2) \cdot 24 \\
& =54+(-2)(132-2 \cdot 54) \\
& =5 \cdot 54+(-2) \cdot 132 \\
& =5 \cdot(186-1 \cdot 132)+(-2) \cdot 132 \\
& =5 \cdot 186+(-7) \cdot 132
\end{aligned}
$$

hence $(x, y)=(5,-7)$ does the job.
I-2. (a) By Euclid's algorithm, $\operatorname{gcd}(272,200)=8$. Also $272 \cdot(-11)+200 \cdot 15=8$. Multiplying the equation through by 2 , we get $272 \cdot(-22)+200 \cdot 30=16$. So $(-22,30)$ is a solution. (b) Suppose that (x, y) is a pair of integers satisfying $272 x+200 y=4$. By definition, $\operatorname{gcd}(272,200)$ divides the LHS, therefore it divides the RHS, i.e. 4. However, 8 does not divide 4 (in \mathbb{Z}). Therefore no such pair (x, y) exists.

I-3.

$$
\begin{aligned}
206 & =64 \cdot 3+14 \\
64 & =14 \cdot 4+8 \\
14 & =8 \cdot 1+6 \\
8 & =6 \cdot 1+2 \\
6 & =2 \cdot 3+0
\end{aligned}
$$

hence $\operatorname{gcd}(206,64)=2$.

$$
\begin{aligned}
2 & =8-1 \cdot 6 \\
& =8-1 \cdot(14-1 \cdot 8) \\
& =2 \cdot 8-1 \cdot 14 \\
& =2 \cdot(64-4 \cdot 14)-1 \cdot 14 \\
& =2 \cdot 64-9 \cdot 14 \\
& =2 \cdot 64-9 \cdot(206-3 \cdot 64) \\
& =(-9) \cdot 206+29 \cdot 64
\end{aligned}
$$

hence $(x, y)=(-9,29)$ is one solution. To find another, we solve $206 x+64 y=0$ (you will see why). Since $206 x=-64 y$, dividing both sides by 2 , we get $103 x=-32 y$. Therefore $(x, y)=(32 r,-103 r)$, as r ranges over \mathbb{Z}, defines a solution for $206 x+64 y=0$ for any r.

Let (x, y) be another solution for $206 x+64 y=2$. By Euclid's algorithm, we have found 206 . $(-9)+29 \cdot 64=2$. Subtracting the latter from the former, we see that $206(x+9)+64(y-29)=0$, i.e., $(x+9, y-29)$. By the analysis above, we then know that $(x+9, y-29)=(32 r,-103 r)$ for some integer r. In other words, $(x, y)=(-9+32 r, 29-103 r)$.

When $r=0$, we recover $(-9,29)$. When $r=1$, we get another solution (23, -74).
I-4. (a)

$$
\begin{aligned}
61 & =18 \cdot 3+7 \\
18 & =7 \cdot 2+4 \\
7 & =4 \cdot 1+3 \\
4 & =3 \cdot 1+1
\end{aligned}
$$

Using this, we see

$$
\begin{aligned}
1 & =4-3 \cdot 1 \\
& =4-(7-1 \cdot 4) \\
& =2 \cdot 4-7 \\
& =2 \cdot(18-2 \cdot 7)-7 \\
& =2 \cdot 18-5 \cdot 7 \\
& =2 \cdot 18-5 \cdot(61-3 \cdot 18) \\
& =17 \cdot 18-5 \cdot 61
\end{aligned}
$$

and therefore $(x, y)=(-5,18)$ is a solution.
(b) Let x and y be a solution for $61 x+18 y=0$. In this case, $61 x=-18 y$. Since 61 divides the LHS, it divides the LHS. But $\operatorname{gcd}(61,18)=1$, so 61 divides y. Let $y=61 r$ for some integer r. Similarly 18 divides the RHS and $\operatorname{gcd}(61,18)=1$, it also divides x. Combining with $y=61 r$, we deduce that $x=-18 r$. In summary, if (x, y) is a solution for $61 x+18 y=1$, then it is of the form $(-18 r, 61 r)$ for some integer r. Conversely, any pair of the form $(-18 r, 61 r)$ defines a solution for the equation $61 x+18 y=1$. In conclusion, the solutions for $61 x+18 y=1$ are $(-18 r, 61 r)$ as ${ }^{\circ}$ ranges over \mathbb{Z}.
(c) Let (x, y) be a pair of integers satisfying $61 x+18 y=1$. Subtracting $61 \cdot(-5)+18 \cdot 17=1$ from it, we see that $61(x+5)+18(y-17)=0$. As we know that $(x+5, y-17)=(-18 r, 61 r)$ for some integer $r,(x, y)=(-5-18 r, 17+61 r)$. Conversely, any pair of integers of the form $(-5-18 r, 17+61 r)$, where r ranges over \mathbb{Z} defines a solution for the equation $61 x+18 y=1$.

I-5. (a) Let (x, y) be a pair of integers satisfying $a x+b y=0$. Then $x=-b y / a$. The RHS defines an integer if and only if $a / \operatorname{gcd}(a, b)$ divides y. In other words, there exists an integer c such that $y=(-c) a / \operatorname{gcd}(a, b)$. Plugging this back into the equation, we get $x=c b / \operatorname{gcd}(a, b)$. (b) Subtracting $a r+b s=\operatorname{gcd}(a, b)$ from $a x+b y=\operatorname{gcd}(a, b)$, we obtain $a(x-r)+b(y-s)=0$. Using (a), we deduce $(x-r, y-s)=(c b / \operatorname{gcd}(a, b),-c a / \operatorname{gcd}(a, b))$, i.e. $(x, y)=(r+c b / \operatorname{gcd}(a, b), s-c a / \operatorname{gcd}(a, b))$.

I-6. By definition, $\operatorname{gcd}(b, c)$ divides b, and c, hence $a \operatorname{gcd}(b, c)$ divides $a b$ and $a c$. In other words, $a \operatorname{gcd}(b, c)($ resp. $-a \operatorname{gcd}(b, c))$ is a common divisor of $a b$ and $a c$ if $a \geqslant 0$ (resp. $a<0$). By definition, $a \operatorname{gcd}(b, c) \leqslant \operatorname{gcd}(a b, a c)($ resp. $-a \operatorname{gcd}(b, c) \leqslant \operatorname{gcd}(a b, a c))$.

To prove the converse, observe firstly that $\operatorname{gcd}(a b, a c)$ divides $a b$ and $a c$. On the other hand, Bezout's identity proves that there exist integers x and y such that $b x+c y=\operatorname{gcd}(b, c)$. Multiplying both sides by a, we obtain $a b x+a c y=a \operatorname{gcd}(b, c)$. Since $\operatorname{gcd}(a b, a c)$ divides the LHS, it also divides the RHS. Hence $\operatorname{gcd}(a b, a c) \leqslant a \operatorname{gcd}(b, c)($ resp. $\operatorname{gcd}(a b, a c) \leqslant-a \operatorname{gcd}(b, c))$ if $a \geqslant 0($ resp. $a<0)$.

I-7. Suppose that there exists a pair of integers (x, y) satisfying $a x+b y=c$. Since $\operatorname{gcd}(a, b)$ divides both a and b, it divides the RHS of $a x+b y=c$. It therefore follows that it also divides the RHS, i.e. c. Conversely, suppose that $\operatorname{gcd}(a, b)$ divides c. By Bezout's identity, there exists a pair of
integers (r, s) such that $a r+b s=\operatorname{gcd}(a, b)$. Hence $(x, y)=(r c / \operatorname{gcd}(a, b), b c / \operatorname{gcd}(a, b))$ defines an integer solution for $a x+b y=c$.

I-8. (a) Let a and b be positive integers. By the fundamental theorem of arithmetic, we may write $a=\prod_{p} p^{r_{p}(a)}$ and $b=\prod_{p} p^{r_{p}(b)}$ where p ranges over the set of prime numbers, and $r_{p}(a)$ and $r_{p}(b)$ are non-negative integers and are 0 for all but finitely many p. Then $\operatorname{lcm}(a, b)=$ $\prod p^{\max \left(r_{p}(a), r_{p}(b)\right)}$. (b) By comparison, $\operatorname{gcd}(a, b)=\prod p^{\min \left(r_{p}(a), r_{p}(b)\right)}$, hence $\operatorname{gcd}(a, b) \operatorname{lcm}(a, b)=$ $\prod_{p}^{p} p^{\max \left(r_{p}(a), r_{p}(b)\right)+\min \left(r_{p}(a), r_{p}(b)\right)}=\prod_{p} p^{r_{p}(a)+r_{p}(b)}=\prod_{p}^{p} p^{r_{p}(a)} \prod_{p} p^{r_{p}(b)}=a b$. (c) Use euclid's algorithm to compute $\operatorname{gcd}(a, b)$. Compute $1 \mathrm{~cm}(a, b)$ by $a b / \operatorname{gcd}(a, b)$.

I-9. Let p be a prime number. We know: if p divides $a b$, then p divides either a or b. Repeatedly apply this to the product of primes in S.

I-10. (a) If N were a prime number, then it follows from $N \equiv-1 \bmod 4$ that N would define an element of S. However, N is defined to be clearly bigger than any element of S. Contradiction. (b) If it were, N would be even. However, $N \equiv-1 \bmod 4$, hence $N \equiv-1 \equiv 1 \bmod 2$. (c) Suppose that a prime number p in S divides N. Then $N \equiv 0 \bmod p$. However, by definition, $N_{S} \equiv 0 \bmod$ p, hence $N=4 N_{S}-1 \equiv 4 \cdot 0-1 \equiv-1 \bmod p$. Contradiction. (d) We have established in (c) that every prime factor p of N is NOT congruent to $-1 \bmod 4$. This means it is congruent to either 0,1 or $2, \bmod 4$. The case $p \equiv 0 \bmod 4$ can not occur (as it would mean that p is divisible by 4 but p is a prime number), while $p \equiv 2 \bmod 4$ would force $p=2$ and we have excluded this case in (b). (e) Since the product of prime numbers $\equiv 1 \bmod 4$ is again congruent to $1 \bmod 4$, it follows from (d) that $N \equiv 1 \bmod 4$. However, $N \equiv-1 \bmod 4$ by definition. Contradiction. It therefore follows that the running assumption that S is finite is false, i.e. S is infinite, i.e. there are infinitely many prime numbers congruent to $-1 \bmod 4$.

