Week 4
In weak 3, we defined

$$
+, x
$$

on $\mathbb{Z}_{n}=$ He set ct equiv

$$
\begin{aligned}
& \text { clams }(\vec{a})_{n} \\
& \text { mint lon } 2 \\
& \text { minn. }
\end{aligned}
$$

Def wee shy that an element $[a]$ in \mathbb{Z}_{n}
has a multiplicative inverse is $\exists b$ st. $[a\lceil[b]=[1]$
$a \equiv b$ med n
[ab]
$[a]=[b]$
$a b \equiv 1 m b n$
RE The multiplication inverse of $[a]$, if exists, is unique

Suppose we have $[b]$ in \mathbb{Z}_{n}
[c]
satisfying $\quad[a][b]=[1]$

$$
[a][c]=[1]
$$

GOAL $[b]=[c]$
Firstly, observe that

$$
\begin{aligned}
{[a][c] } & =[1] \\
"[a c] & =\{d \equiv a c \text { amd } n\}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
& {[c a]}
\end{array}\right)=\{d \equiv c a \bmod n\}
$$

Multiplying both sides of

$11 \leqslant$ by defn $\& x$
[C]
Therefore $[c]=[b]$
Theviem 12
[a] in \mathbb{Z}_{n} has
a multiplicatie inverse in \mathbb{Z}_{n}

$$
\Leftrightarrow \quad \operatorname{sed}(a, n)=1
$$

I proved: if $\operatorname{gcd}(a, n)=1$,
ten [a] has a mutitiplecio
innese.
If $\operatorname{sed}(a, h)=1$,
Hen Thedrem 7 (Bezont) giks

$$
\begin{aligned}
& r, \$ \in \mathbb{Z} \text { s.t. } \\
& a r+n \$=\operatorname{gd}(a, n) \\
\Rightarrow & a r-1=-n s
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad a r \equiv 1 \text { md } n \\
& \Rightarrow \quad[a r]=[1] \text { in } \mathbb{Z}_{n} \\
& \Rightarrow \quad[a][r]=[1] \\
& \text { m } \\
& \text { this is what we are } \\
& \text { lodi for T. }
\end{aligned}
$$

Example
What is the multiplicative inverse if $[23]_{203}$?

What is the multiplicate inverse

$$
\begin{aligned}
& \text { if }[9]_{2023} \text { ? } \\
& a=9 \quad n=2023 \\
& {[2023=9 \cdot 224+7} \\
& 9=7 \cdot 1+2 \\
& \eta=2 \cdot 3+(1) \\
& 1=7-2 \cdot 3 \\
& =7-(9-1 \cdot 7) \cdot 3
\end{aligned}
$$

$$
\begin{aligned}
&= 4 \cdot 7-3 \cdot 9 \\
&= 4 \cdot(2023-9 \cdot 224)-3 \cdot 9 \\
&= 4 \cdot 2023+(-899) \cdot 9 \\
&= {[-899]_{2013} } \\
& \frac{11}{1124}
\end{aligned}
$$

Example Let p be a prime humber.

Then $Z_{p}=\mathbb{F}_{p}$

$$
=\{[0],[1], \cdots,
$$

$$
[p-17]
$$

Which
[G] in have multipicatle inverse?

Thevem 12 says
all $[a] \quad \operatorname{scd}(a, p)=1$.
Infact $\Leftrightarrow P$ do Ni木 divike
$[1],[2], \cdots,[p-1]$
shatisy this conlition.
Prop 13
[a] in $\mathbb{Z} n$ has
no multiplicative inverse
\Leftrightarrow thare exists an intger b, not civíside by n,

$$
\text { s.t. }[a][b]=[0] .
$$

Examne $\quad n=6$
Both [2]6. [3]6 do NoI have multiplicatio inverses.

$$
\begin{equation*}
[2]_{6}[3]_{6}=[2 \cdot 3]_{6}=[6]_{6}= \tag{0}
\end{equation*}
$$

typed-up
If See Lectare nots
is Treek 2 tab.
Gien $n>1$, how many elements in \mathbb{Z}_{n} have multiplicatice
inverse?
In theory, we need to count $0 \leq a \leq n-1$ s.t. $\operatorname{gd}(a, n)=1$

$$
\begin{aligned}
& \text { Ex } n=24 . \quad \text { gck }(a, 24)=1 \\
& 0(112,64(5) 6(7) 89 \times 6 \\
& \text { (11) } x+(13) 141546(17) 18(19) 28 \\
& x^{2}+x^{2}(23) \\
& 8
\end{aligned}
$$

If n is really big, this approch seems tither in practical
There is a fotmalato compute

$$
\text { to size of }\left\{0 \leq a \leq n-1 \left\lvert\, \begin{array}{rl}
\operatorname{gd}(a, n) \\
=1
\end{array}\right.\right\}
$$

Recall from te funcmenertal theorem of arithmetic
that any positive integer
n is of the form

$$
=\pi p^{r_{p}}
$$

$T(P)=$
Ho product

$$
0 \leq r_{p}
$$

of $p^{\text {p }}$

$$
\phi(n)=\prod_{p}(p-1) p^{r p-1}
$$

computes to number.

$$
\text { Example } \begin{aligned}
& n= 24 \\
&= 2^{3} \cdot 3 \\
&\left(\begin{array}{l}
r_{p}=0 \text { if } p \neq 2.3 \\
r_{2}=3 \\
r_{3}=1
\end{array}\right. \\
& \begin{aligned}
\phi(24)= & (2-1) 2^{3-1} \cdot(3-1) \cdot 3^{1-0} \\
= & 1 \cdot 4 \cdot 2 \cdot 1 \\
= & 8
\end{aligned}
\end{aligned}
$$

What is maltip inverse useful for?

Example Solve

$$
\begin{aligned}
& 7 x \equiv 1 \text { med } 11 \\
& \text { in } x \in \mathbb{Z} \\
\Leftrightarrow & {[7][x]_{n}=[1]_{n} }
\end{aligned}
$$

What is $[x]_{11}$??

Apptoch \#1

$$
\begin{aligned}
\sin Q \mathbb{Z}_{11} & =\mathbb{F}_{11} \\
& =\{[0], \cdots,[10]\} .
\end{aligned}
$$

$$
[7]_{11}[x]_{11}=[1)_{4}
$$

\Leftrightarrow

$$
[7 x]-[1]=[0]
$$

Approcach \#2
Find the multiplicatle invere δ [$\quad \overline{7}]_{1}$
By Eucid's alsoriftum, wo find that $\quad \operatorname{sed}(7.11)=1$

$$
2 \cdot 11-3.7
$$

$$
\Rightarrow \quad[-3]_{11}=[8]_{11}
$$

is the multiplicate incurs if [7]
Multiply both sides of

$$
\begin{gathered}
\left.[\eta]_{n 1}[x]_{11}=\right][1]_{11} \\
\text { by }[8]_{11} \\
\Rightarrow \quad \underbrace{[8]_{11}[7]_{11}}_{\substack{11}}[x]_{11}=[8]_{11}[1]_{11}
\end{gathered}
$$

$$
\begin{aligned}
\Rightarrow & {[1][x] } & =[8][1] \\
\Rightarrow & {[x] } & =[8]
\end{aligned}
$$

In generod, yon'll be ade to solve

$$
a x+b \equiv c
$$

$\bmod n$
if $\operatorname{ged}(a, n)=1$.
Haw?

$$
[a][x]+[b]=[c]
$$

Sten 1
Find the maltiplicite iwerse

$$
[a]^{-1}(\neq 1 /(a \mid)
$$

c) $\lceil a\rangle$.

Step 2

$$
\begin{aligned}
{[a\rceil[x] } & =[c\rceil-\mid b\rceil \\
& =[c-b]
\end{aligned}
$$

Step 3 Mutiply $[a]^{-1}$

$$
[x]=[a]^{-1} \cdot[c-b] .
$$

