Practice Set 4

- 1. An investor is considering entering a business venture which involves a 50-50 chance of an income of £900 or £400 depending on the state of the economy. The initial investment involves a payment of $I_0 = \pounds 650$. Investor's initial wealth is $w_0 = \pounds 1,000$.
 - a) Using the definition of a "fair gamble", explain whether this business venture is a fair gamble for the investor.
 - b) Assume that the investor's utility function of wealth is $v(w) = \sqrt{w}$, with w > 0. Explain, giving reasons, whether the investor would invest I_0 or any other amount in this venture.
 - c) Suppose the investor has instead a utility function described by v(y) = ay where a > 0. What is the amount the investor is prepared to invest to take part in the venture?
 - d) If the investor's utility function is $v(w) = w^2$, is he willing to invest the required initial investment of £650?
 - e) Explain the reason for the different investment values (under which the investor is willing to invest) in the situations described in points b), d), and e).
 - 2. An investor has the choice between two assets, A and B.

The annual return on asset A is a continuous random variable uniformly distributed between 3% and 7%. Note that the probability density function for a continuous uniform distribution on the interval [a, b] is $f(x) = \frac{1}{b-a}$ for $a \le x \le b$ and f(x) = 0 otherwise.

The annual return on investment B will only take discrete values with probabilities given in the following table:

Probability	0.3	0.3	0.2	0.2
Return	4%	-4%	10%	-8%

For each investment calculate the following statistics:

- i) Expected annual return.
- ii) Variance of annual return.
- iii) Semi-variance of annual return.
- iv) Shortfall probability with a required level of annual return of 6%.
- v) Explain which investment you would choose based on your previous answers.
- 3. There are 100 possible states for the market over the next year with each state being equally likely. Two assets, *A* and *B* have returns over the next year of R_A and R_B respectively. These returns depend on the state of the market and are given below as percentages:

Market	R_A	R_B	
condition			
1	-5.0	-10.0	
2	-3.5	-7.5	
3	-3.0	-6.5	
4	-2.8	-5.0	
5	-2.5	-2.5	
6	-2.0	-2.0	
•••	•••		
98	6.5	6.5	
99	9.0	9.0	
100	10.0	10.0	

For
$$X = A,B$$
: calculate:
(i) $SP(R_X; -2.5)$

(ii)
$$VaR(R_X; q = 5\%)$$
 and $VaR(R_X; q = 1\%)$