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I Commonly Used Measures of Investment Risks
I Expected Value of Returns
I Variance of Returns
I Semi-Variance of Returns
I Shortfall Probabilities
I Value at Risk
I Expected Shortfall
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Measures of Investment Risk

Question: How can we rank investments/gambles/lotteries if

I if we don’t know the whole distribution of returns of
investment/asset

Answer: Use partial known information on the distribution of
returns (i.e. moments of distribution)
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Measures of Investment Risk

Return on Asset: percentage increase in the market value of an
asset over a specified period

I Discrete Random Variable X can take values x1,..., xn with
probabilities p1..., pn and ∑i pi = 1

I Continuous Random Variable X can take values across a
range characterised by a p.d.f. f (x)
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Measures of Investment Risk

I Expected Value/Mean

E (X ) ≡ µ = ∑
i
pixi if X is discrete

E (X ) ≡ µ =
∫ ∞

−∞
xf (x)dx if X is continuous

I Measures of investment risk:

I variance of returns

I downside semi-variance of return

I shortfall probabilities

I value at risk/tail value at risk
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Variance of Returns

Most theories of investment risk use variance of return as the
measure of risk

Var (X ) ≡ σ2 = ∑
i
(xi − µ)2pi if X is discrete

Var (X ) ≡ σ2 =
∫ ∞

−∞
(x − µ)2 f (x)dx if X is continuous
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Variance of Returns
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Example

The investment annual returns X for a particular stock are
modelled using a pdf:

f (x) = 750
(
0.01− (x − 0.05)2

)
−0.05 ≤ x ≤ 0.15 or− 5% ≤ x ≤ 15%

Verify that f (x) is a proper pdf:∫ 0.15

−0.05
f (x) dx =

∫ 0.15

−0.05
750

(
0.01− (x − 0.05)2

)
dx

= 750
∫ 0.15

−0.05

(
0.0075+ 0.1x − x2

)
dx

= 750
[
0.0075x +

0.1x2

2
− x

3

3

]0.15
−0.05

= 1
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Example

The average of the returns:

E (X ) = 750
∫ 0.15

−0.05
x
(
0.01− (x − 0.05)2

)
dx

= 750
∫ 0.15

−0.05
x
(
0.01−

(
x2 − 0.1x + 0.0025

)2)
dx

750
∫ 0.15

−0.05

(
0.0075x + 0.1x2 − x3

)
dx

= 750
[
0.0075
2

x2 +
0.1x3

3
− x

4

4

]0.15
−0.05

= 0.05
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Example

The variance of the returns for the same stock:

Var (X ) =
∫ 0.15

−0.05
750

(
0.01− (x − 0.05)2

)
(x − 0.05)2 dx

= 750
∫ 0.15

−0.05

(
0.01 (x − 0.05)2 − (x − 0.05)4

)
dx

= 750
[
0.01
3
(x − 0.05)3 − 1

5
(x − 0.05)5

]0.15
−0.05

= 0.002
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Variance of Returns - Further Examples
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Variance of Returns
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Variance of Returns
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Variance of Returns: A binomial model
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Variance of Returns: A binomial Model

Examples:
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Variance of Returns: A binomial Model

Pairwise comparison
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Variance of Returns: A binomial Model

Pairwise comparison
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Variance of Returns: A binomial Model

Pairwise comparison:
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Variance of Returns: A binomial Model

Pairwise comparison:
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Variance of Returns: A binomial Model

Pairwise comparison:
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Variance of Returns: A binomial Model
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Investment Dominance

Note: this is NOT Stochastic dominance!
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Effi cient Subset
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Looking at Data
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Looking at Data

If we can estimate the means and the standard deviations of
returns from the data and plot them on a diagram:

I x axis: standard deviation

I y axis: mean or expected return
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Looking at Data
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Looking at Data
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Looking at Data
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Variance of Returns
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Semi-Variance of Return

The (downside) semi-variance of return (SV ) is defined as:-

SV (X ) = ∑
xi≤µ

(xi − µ)2pi if X is discrete

SV (X ) =
∫ µ

−∞
(x − µ)2 f (x)dx if X is continuous

I It doesn’t take into account the variability above the mean
(‘upside risk’)

I It is not so easy to handle mathematically
I How does this relate to variance?
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Example

Continuing the first example:

SV (X ) =
∫ 0.05

−0.05
750

(
0.01− (x − 0.05)2

)
(x − 0.05)2 dx

= 750
∫ 0.05

−0.05

(
0.01 (x − 0.05)2 − (x − 0.05)4

)
dx

= 750
[
0.01
3
(x − 0.05)3 − 1

5
(x − 0.05)5

]0.05
−0.05

= 0.001

Anything strikes you? Why is this the case?
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Shortfall Probabilities

I I A shortfall probability measures the probability of returns
falling below a certain level - the risk of ruin:

∑
x<L

pi if X is discrete

∫ L

−∞
f (x)dx if X is continuous

I L: the chosen benchmark level
I an absolute level required to meet a payment
I return on a benchmark fund

I denoted SP (X ) or SF (bechmark)
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Example

Continuing the example, find the shortfall probability for the stock
given that the benchmark return is 0

SP (X ) = Pr (X < 0) =

=
∫ 0

−0.05
750

(
0.01− (x − 0.05)2

)
dx

= 750

[
0.01x − (x − 0.05)

3

3

]0
−0.05

= 0.15625
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Shortfall Probabilities

34 of 30



Shortfall Probabilities: empirical data

If the benchmark is b = −0.1 :
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Value at Risk

Value at Risk (VaR):

I statistical measure of the downside risk

I uses confidence limits to assess the potential losses on a
portfolio over a given future time period

I the largest number L such that the probability that the loss on
the portfolio is greater than VaR, is q

I relates to Shortfall Probability but specifies a probability q
and calculates the corresponding shortfall

If X is discrete:

VaR (X ; q) = −L where L = {max xi : Pr (X < xi ) ≤ q}

If X is continuous:

VaR (X ; q) = −L where Pr (X < L) = q
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Value at Risk

I VaR is the mirror image of SP

I rather than specify a threshold value L and measure the
probability, VaR specifies the probability and measures the
corresponding threshold value

I VaR can be calculated from the probability of gains/losses
during a period T

I VaR says: We are 100− q certain that we will not loose
more than £ L in time T

I Since the nineties VaR a very popular measure of risk
I JPMorgan credited with starting popularising it
I Alternative notation Varα (X ) where α is 1− q
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Value at Risk for empirical data
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Value at Risk for empirical data

39 of 30



Example

Find the VaR over one year with 95% confidence interval for a
portfolio consisting of £ 100 million invested in the stock used
before.

Pr (X < L) = 0.05

750
∫ L

−0.05

(
0.01− (x − 0.05)2

)
dx = 0.05

750
(
0.01x − 1

3
(x − 0.05)3

)L
−0.05

= 0.05

L = −0.02293
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Example

Since L is a percentage investment return, the 95% value at risk on
a £ 100 million portfolio is £ 100 million× 0.02293 =£ 2.293 million.
Interpretation: we are 95% certain that we will not loose more
than £ 2.293 million.
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Expected Shortfall

I VaR asks the question:

I How bad things can go?

I Suppose a bank tells a trader that the one day 99%VaR of
the trader’s portfolio must be kept at less than £ 10 million.

I he constructs a portfolio where 99.1% chance the daily loss is
£ 10 million and 0.9% chance is £ 500 million: Unacceptable
risk

I Expected shortfall asks the question:

I If things go bad, what is the expected loss?
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Expected Shortfall

For a shortfall probability q and corresponding threshold L such
that Pr (X < L) = q then expected shortfall is:

E [max (L− X , 0)] = ∑
xi≤L

(L− xi ) pi for X discrete

E [max (L− X , 0)] =
∫ L

−∞
(L− x) f (x)dx for X continuous

For the (1− q)× 100% confidence limit, expected shortfall
represents the expected loss in excess of the q− th lower tail value.
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Example

Find the expected shortfall over one year with 95% confidence
interval for a portfolio consisting of £ 100 million invested in the
stock from the initial example.

E (−0.02293− X |X < −0.02293)

= 750
∫ −0.02293
−0.05

(−0.02293− x)
(
0.01− (x − 0.05)2

)
dx

= 0.000462

On a portfolio of £ 100 million the 95% EXSP =£ 100
million× 0.000462 =£ 0.0462 million.
Interpretation: the expected loss in excess of £ 2.293 million is
£ 46, 200.
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