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1 Chapter 2 and Chapter 3 (Week 1-3)

GOAL: Get used to an axiomatic approach to mathematics– given definitions/axioms, derive gen-
eral statements about integers (that we know too well) via proofs and careful inspection of defini-
tions etc.

Proposition 1. Let a and b be integers and suppose b > 0. Then a = bq+ r for some integers q
and 0 ≤ r < b. The pair (q, r) is unique.

Definition. Let a and b be integers. We say that a divides b if there exists an integer c such that
b = ac.

Remark. The only integer 0 divides is 0 itself.

Definition. Let a and b be integers. A common divisor of a and b is a non-negative integer s
such that s divides both a and b. A gcd of a and b is the common divisor r satisfying the property
that if s is another (different) common divisor of a and b, then s < r.

Proposition 2. s divides r.

We can say something similar for the lcm of a and b.

Proposition 4. If a is a non-negative integer, gcd(a, 0) = a. This is not a definition.

Lemma 5. gcd(a, b) = gcd(−a, b) = gcd(a,−b) = gcd(−a,−b). This is not a definition.

Theorem 7 (Bezout’s identity). Let a and b be integers. Then there exist integers r and s such
that ar + bs = gcd(a, b).

The proof of Bezout explains only that these integers r and s exist and does not shed any light
on how to actually find them. In practice, we make appeal to Euclid’s algorithm instead.

Euclid’s algorithm is based on the following proposition:
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Proposition 6. Let a and b be integers. Suppose b > 0. By Proposition 1, there exists a uniqe
pair of integers q and 0 ≤ r < b such that a = bq+ r. Then gcd(a, b) = gcd(b, r).

How do we use Euclid’s algorithm to find r and s satisfying ar + bs = gcd(a, b)?

(NON-EXAMINABLE) If your Euclid’s algorithm looks like:

...
(sn) rn−2 = rn−1qn + rn

(sn+1) rn−1 = rnqn+1 + rn+1
...

(sN ) rN−1 = rNqN+1 + rN+1

(sN+1) rN = rN+1qN+2

then we know that gcd(a, b) is rN+1, because we may repeat Proposition 6 to deduce that

gcd(a, b) = · · · = gcd(rn−2, rn−1)
(sn)
= gcd(rn−1, rn)

(sn+1)
= gcd(rn, rn+1) = · · · =

gcd(rN−1, rN )
(sN )
= gcd(rN , rN+1)

(sN+1)
= rN+1.

We also see from (sN ) that rN+1 = −qN+1rN + rN−1. Indeed, for every n (e.g. N ,N −1, . . . ),
there exist integers Xn and Yn satisfying

rN+1 = Xnrn + Ynrn−1.

This will find us r and s such that ar + bs = rN+1.
Wemay prove the assertion by induction ‘in reverse’ (one can reindex all to make this rigorous).

We saw (XN ,YN ) = (−qN , 1) does the job. Supposing that there exist integers Xn and Yn such
that

rN+1 = Xnrn + Ynrn−1,

we aim at proving that there exists Xn−1 and Yn−1 such that

rN+1 = Xn−1rn−1 + Yn−1rn−2.

We will spell out Xn−1 and Yn−1 in terms of Xn and Yn. To see this, plug rn = (−qn)rn−1 + rn−2

obtained from (sn) into rN+1 = Xnrn + Ynrn−1. We then get

rN+1 = Xn((−qn)rn−1 + rn−2) + Ynrn−1 = (−qnXn + Yn)rn−1 + Xnrn−2,

hence (Xn−1,Yn−1) = (−qnXn + Yn,Xn) does the job. It is possible to use this inductively (as n
decreases) to find X ’s and Y ’s, starting with (XN ,YN ) = (−qN , 1).

Definition. A prime number is a positive integer n whose positive integer divisor is 1 or itself.
Alternatively, we may define it as a positive integer whose integer divisors are {±1,±n}.

By Bezout, this is equivalent to the following: if a and b are integers and n divides ab, then n
divides either a or b. The latter definition allows us to prove:

2



Theorem 8 (the Fundamental Theorem of Arithmetic). Every integer is of the form

(−1)r∞
∏
p

prp

for some non-negative integers r∞ and rp, up to reordering of prime factors. The power rp is the
maximum number of time p divides the integer. For example, 45 = 32 · 5 so rp = 0 if p is not 3
nor 5, r3 = 2, r5 = 1 and r∞ = 0.

LetR be a relation on S. We let [a] = [a]R denote the subset of all b in S which are related to
a, i.e. aRb. IfR is an equivalence relation (satisfying a set of conditions), then

aRb if and only if [a] = [b].

Theorem 9. Given a set S, there exists a bijective correspondence between

• the equivalence relationsR on S,

• the partitionsP (a set of subsets of S satisfying certain conditions) on S.

Proposition 10. Let n be a positive integer. Then (R,S) = (≡ Z), defined such that a ≡ b
mod n if and only if n divides b− a (for integers a and b), is an equivalence relation.

Definition. Let Zn denote the set of equivalence classes [a] with respect to (≡,Z).

Since a ≡ bmod n if and only if [a] = [b], a lot of equivalence classes may be identified. Indeed,

Proposition 11. |Zn| = n.

Proposition 1 proves Proposition 11. Indeed, if a is an integer (n is, by definition, a positive
integer), then there exists q and 0 ≤ r < n such that a = nq + r. Therefore a ≡ r, i.e. [a] = [r].
The proof also elaborates that Zn = {[0], [1], . . . , [n − 1]}. The element [r] is nothing other than
the set of integers b with remainder r when divided by n (i.e. b ≡ r mod n).

On Zn, we define +,−,×:
[a] + [b] = [a+ b]
[a]− [b] = [a− b]
[a][b] = [ab]

but no division. These do not depend on choice of representatives, i.e. if a ≡ a′ mod n, then
[a] + [b] = [a′] + [b] etc.

No division is defined but:

Definition. We say that [a] of Zn has multiplicative inverse if there exists an integer b such that
[a][b] = [1] (or equivalently ab ≡ 1 mod n). This plays the role of 1/[a] but not literally (1/[a] or
[1/a] simply does not make sense!). The multiplicative inverse is often written as [a]−1.
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Remark. The multiplicative inverse, if exists, is unique. Suppose that [b] and [c] are elements
of Zn such that [a][b] = [1] and [a][c] = [1]. Multiplying both sides of [c][a] = [1] by [b], we obtain
[c][a][b] = [1][b], i.e. [c] = [b].

Theorem 12. An element [a] of Zn has multiplicative inverse if and only if gcd(a, n) = 1.

The proof explains how to find the multiplicative inverse explicitly. If a is an integer such that
gcd(a, n) = 1 (which one can check in practice by Euclid’s algorithm), Euclid’s algorithm find
integers b and c such that ab + nc = gcd(a, n) = 1. It then follows that ab ≡ 1 mod n, i.e.
[a][b] = [ab] = [1].

Proposition 13. An element [a] of Zn has no multiplicative inverse if and only if there exists b,
not congruent to 0 mod n, such that [a][b] = [0].

Example. [2]6[3]6 = [0]6.

It is possible to compute the number of elements in Zn with multiplicative inverses, using the

fundamental theorem of arithmetic: if =
∏
p

prp , then it is computed by
∏

p(p− 1)prp−1.

What is it useful for? It is possible to solve ‘linear congruence equations’: ax + b ≡ c mod n
(when gcd(a, n) = 1). Indeed, [x] = [c − b][a]−1 where [a]−1 is the multiplicative inverse of [a]
(this is NOT 1/[a]). What if gcd(a, n) > 1? Take Number Theory next year!
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