MTH4104 Cheat Sheet

Shu Sasaki

13th February 2024

1 Chapter 2 and Chapter 3 (Week 1-3)

GOAL: Get used to an axiomatic approach to mathematics- given definitions/axioms, derive general statements about integers (that we know too well) via proofs and careful inspection of definitions etc.

Proposition 1. Let a and b be integers and suppose $b>0$. Then $a=b q+r$ for some integers q and $0 \leq r<b$. The pair (q, r) is unique.

Definition. Let a and b be integers. We say that a divides b if there exists an integer c such that $b=a c$.

Remark. The only integer 0 divides is 0 itself.
Definition. Let a and b be integers. A common divisor of a and b is a non-negative integer s such that s divides both a and b. A gcd of a and b is the common divisor r satisfying the property that if s is another (different) common divisor of a and b, then $s<r$.

Proposition 2. s divides r.
We can say something similar for the lcm of a and b.
Proposition 4. If a is a non-negative integer, $\operatorname{gcd}(a, 0)=a$. This is not a definition.
Lemma 5. $\operatorname{gcd}(a, b)=\operatorname{gcd}(-a, b)=\operatorname{gcd}(a,-b)=\operatorname{gcd}(-a,-b)$. This is not a definition.
Theorem 7 (Bezout's identity). Let a and b be integers. Then there exist integers r and s such that $a r+b s=\operatorname{gcd}(a, b)$.

The proof of Bezout explains only that these integers r and s exist and does not shed any light on how to actually find them. In practice, we make appeal to Euclid's algorithm instead.

Euclid's algorithm is based on the following proposition:

Proposition 6. Let a and b be integers. Suppose $b>0$. By Proposition 1, there exists a uniqe pair of integers q and $0 \leq r<b$ such that $a=b q+r$. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

How do we use Euclid's algorithm to find r and s satisfying $a r+b s=\operatorname{gcd}(a, b)$?
(NON-EXAMINABLE) If your Euclid's algorithm looks like:

$$
\begin{array}{rrl}
\left(s_{n}\right) & r_{n-2} & =r_{n-1} q_{n}+r_{n} \\
\left(s_{n+1}\right) & r_{n-1} & =r_{n} q_{n+1}+r_{n+1} \\
& & \vdots \\
\left(s_{N}\right) & r_{N-1} & =r_{N} q_{N+1}+r_{N+1} \\
\left(s_{N+1}\right) & r_{N} & =r_{N+1} q_{N+2}
\end{array}
$$

then we know that $\operatorname{gcd}(a, b)$ is r_{N+1}, because we may repeat Proposition 6 to deduce that

$$
\begin{gathered}
\operatorname{gcd}(a, b)=\cdots=\operatorname{gcd}\left(r_{n-2}, r_{n-1}\right) \stackrel{\left(s_{n}\right)}{=} \operatorname{gcd}\left(r_{n-1}, r_{n}\right) \stackrel{\left(s_{n+1}\right)}{=} \operatorname{gcd}\left(r_{n}, r_{n+1}\right)=\cdots= \\
\operatorname{gcd}\left(r_{N-1}, r_{N}\right) \stackrel{\left(s_{N}\right)}{=} \operatorname{gcd}\left(r_{N}, r_{N+1}\right) \stackrel{\left(s_{N+1}\right)}{=} r_{N+1} .
\end{gathered}
$$

We also see from $\left(s_{N}\right)$ that $r_{N+1}=-q_{N+1} r_{N}+r_{N-1}$. Indeed, for every n (e.g. $N, N-1, \ldots$), there exist integers X_{n} and Y_{n} satisfying

$$
r_{N+1}=X_{n} r_{n}+Y_{n} r_{n-1}
$$

This will find us r and s such that $a r+b s=r_{N+1}$.
We may prove the assertion by induction 'in reverse' (one can reindex all to make this rigorous). We saw $\left(X_{N}, Y_{N}\right)=\left(-q_{N}, 1\right)$ does the job. Supposing that there exist integers X_{n} and Y_{n} such that

$$
r_{N+1}=X_{n} r_{n}+Y_{n} r_{n-1},
$$

we aim at proving that there exists X_{n-1} and Y_{n-1} such that

$$
r_{N+1}=X_{n-1} r_{n-1}+Y_{n-1} r_{n-2} .
$$

We will spell out X_{n-1} and Y_{n-1} in terms of X_{n} and Y_{n}. To see this, plug $r_{n}=\left(-q_{n}\right) r_{n-1}+r_{n-2}$ obtained from $\left(s_{n}\right)$ into $r_{N+1}=X_{n} r_{n}+Y_{n} r_{n-1}$. We then get

$$
r_{N+1}=X_{n}\left(\left(-q_{n}\right) r_{n-1}+r_{n-2}\right)+Y_{n} r_{n-1}=\left(-q_{n} X_{n}+Y_{n}\right) r_{n-1}+X_{n} r_{n-2},
$$

hence $\left(X_{n-1}, Y_{n-1}\right)=\left(-q_{n} X_{n}+Y_{n}, X_{n}\right)$ does the job. It is possible to use this inductively (as n decreases) to find X 's and Y 's, starting with $\left(X_{N}, Y_{N}\right)=\left(-q_{N}, 1\right)$.

Definition. A prime number is a positive integer n whose positive integer divisor is 1 or itself. Alternatively, we may define it as a positive integer whose integer divisors are $\{ \pm 1, \pm n\}$.

By Bezout, this is equivalent to the following: if a and b are integers and n divides $a b$, then n divides either a or b. The latter definition allows us to prove:

Theorem 8 (the Fundamental Theorem of Arithmetic). Every integer is of the form

$$
(-1)^{r_{\infty}} \prod_{p} p^{r_{p}}
$$

for some non-negative integers r_{∞} and r_{p}, up to reordering of prime factors. The power r_{p} is the maximum number of time p divides the integer. For example, $45=3^{2} \cdot 5$ so $r_{p}=0$ if p is not 3 nor $5, r_{3}=2, r_{5}=1$ and $r_{\infty}=0$.

Let \mathscr{R} be a relation on S. We let $[a]=[a]_{\mathcal{R}}$ denote the subset of all b in S which are related to a, i.e. $a \mathscr{R} b$. If \mathscr{R} is an equivalence relation (satisfying a set of conditions), then

$$
a \mathfrak{R} b \text { if and only if }[a]=[b] .
$$

Theorem 9. Given a set S, there exists a bijective correspondence between

- the equivalence relations \mathscr{R} on S,
- the partitions \mathscr{P} (a set of subsets of S satisfying certain conditions) on S.

Proposition 10. Let n be a positive integer. Then $(\mathscr{R}, S)=(\equiv \mathbb{Z})$, defined such that $a \equiv b$ $\bmod n$ if and only if n divides $b-a($ for integers a and b), is an equivalence relation.

Definition. Let \mathbb{Z}_{n} denote the set of equivalence classes $[a]$ with respect to (\equiv, \mathbb{Z}).
Since $a \equiv b \bmod n$ if and only if $[a]=[b]$, a lot of equivalence classes may be identified. Indeed,
Proposition 11. $\left|\mathbb{Z}_{n}\right|=n$.
Proposition 1 proves Proposition 11. Indeed, if a is an integer (n is, by definition, a positive integer), then there exists q and $0 \leq r<n$ such that $a=n q+r$. Therefore $a \equiv r$, i.e. $[a]=[r]$. The proof also elaborates that $\mathbb{Z}_{n}=\{[0],[1], \ldots,[n-1]\}$. The element $[r]$ is nothing other than the set of integers b with remainder r when divided by $n($ i.e. $b \equiv r \bmod n)$.

On \mathbb{Z}_{n}, we define,,$+- \times$:

$$
\begin{aligned}
{[a]+[b] } & =[a+b] \\
{[a]-[b] } & =[a-b] \\
{[a][b] } & =[a b]
\end{aligned}
$$

but no division. These do not depend on choice of representatives, i.e. if $a \equiv a^{\prime} \bmod n$, then $[a]+[b]=\left[a^{\prime}\right]+[b]$ etc.

No division is defined but:
Definition. We say that $[a]$ of \mathbb{Z}_{n} has multiplicative inverse if there exists an integer b such that $[a][b]=[1]$ (or equivalently $a b \equiv 1 \bmod n)$. This plays the role of $1 /[a]$ but not literally $(1 /[a]$ or $[1 / a]$ simply does not make sense!!). The multiplicative inverse is often written as $[a]^{-1}$.

Remark. The multiplicative inverse, if exists, is unique. Suppose that $[b]$ and $[c]$ are elements of \mathbb{Z}_{n} such that $[a][b]=[1]$ and $[a][c]=[1]$. Multiplying both sides of $[c][a]=[1]$ by $[b]$, we obtain $[c][a][b]=[1][b]$, i.e. $[c]=[b]$.

Theorem 12. An element $[a]$ of \mathbb{Z}_{n} has multiplicative inverse if and only if $\operatorname{gcd}(a, n)=1$.
The proof explains how to find the multiplicative inverse explicitly. If a is an integer such that $\operatorname{gcd}(a, n)=1$ (which one can check in practice by Euclid's algorithm), Euclid's algorithm find integers b and c such that $a b+n c=\operatorname{gcd}(a, n)=1$. It then follows that $a b \equiv 1 \bmod n$, i.e. $[a][b]=[a b]=[1]$.

Proposition 13. An element $[a]$ of \mathbb{Z}_{n} has no multiplicative inverse if and only if there exists b, not congruent to $0 \bmod n$, such that $[a][b]=[0]$.

Example. $[2]_{6}[3]_{6}=[0]_{6}$.
It is possible to compute the number of elements in \mathbb{Z}_{n} with multiplicative inverses, using the fundamental theorem of arithmetic: if $=\prod_{p} p^{r_{p}}$, then it is computed by $\prod_{p}(p-1) p^{r_{p}-1}$.

What is it useful for? It is possible to solve 'linear congruence equations': $a x+b \equiv c \bmod n$ (when $\operatorname{gcd}(a, n)=1$). Indeed, $[x]=[c-b][a]^{-1}$ where $[a]^{-1}$ is the multiplicative inverse of $[a]$ (this is NOT $1 /[a]$). What if $\operatorname{gcd}(a, n)>1$? Take Number Theory next year!

