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1 Chapter 2 and Chapter 3 (Week 1-3)

GOAL: Get used to an axiomatic approach to mathematics— given definitions/axioms, derive gen-
eral statements about integers (that we know too well) via proofs and careful inspection of defini-
tions etc.

Proposition 1. Let @ and b be integers and suppose b > 0. Then a = bg + r for some integers ¢
and 0 < 7 < b. The pair (¢,7) is unique.

Definition. Let @ and b be integers. We say that a divides b if there exists an integer ¢ such that
b = ac.

Remark. The only integer 0 divides is 0 icself.

Definition. Let @ and b be integers. A common divisor of @ and b is a non-negative integer s
such that s divides both @ and b. A ged of @ and b is the common divisor 7 satisfying the property
that if s is another (different) common divisor of @ and b, thens < r.

Proposition 2. s divides .

We can say something similar for the lem of @ and .

Proposition 4. If @ is a non-negative integer, gcd(a, 0) = a. This is not a definition.

Lemma 5. ged(a, b) = ged(—a, b) = ged(a, —b) = ged(—a, —b). This is not a definition.

Theorem 7 (Bezout’s identity). Let @ and b be integers. Then there exist integers r and s such

that ar + bs = ged(a, b).

The proof of Bezout explains only that these integers 7 and s exist and does not shed any light
on how to actually find them. In practice, we make appeal to Euclid’s algorithm instead.

Euclid’s algorithm is based on the following proposition:



Proposition 6. Let @ and b be integers. Suppose b > 0. By Proposition 1, there exists a uniqe
pair of integers ¢ and 0 < r < b such that a = bg + r. Then ged(a, b) = ged(b, r).

How do we use Euclid’s algorithm to find 7 and s satistying ar + bs = ged(a, b)?

(NON-EXAMINABLE) If your Euclid’s algorithm looks like:

(Sn) Tho = Ty 1qu + 71y
(Sn—i-l) Tn—1 = TpGnt+1 + Tnt1

(S8) TN—1 = TNGN41 F TN
(Sn41) 'N = TN4+1dN42

then we know that ged(a, b) is 7y41, because we may repeat Proposition 6 to deduce that

()

(Sn41)

ng(d,b) == ng(r’n—%rn—l) = ng(rn—lyrn) = ng(rn;Tn—l—l) — =
ng(TN_l, T'N) (g) ng(TN7 TN—&—I) (SN:JFI) T'N+1.
We also see from (sy) that 7x41 = —gn117n +7n—1. Indeed, for everyn (e.g. N, N —1,...),

there exist integers X, and Y, satistying
'N+1 = ann + ann—l-

This will find us 7 and s such that ar + bs = ry,1.

We may prove the assertion by induction ‘in reverse’ (one can reindex all to make this rigorous).
We saw (X, Yn) = (—¢n, 1) does the job. Supposing that there exist integers X, and Y, such
that

N1 = Xy + Yo,

we aim at proving that there exists X,_; and ¥, such that
N+1 = }(nflrnfl + Ynflran-

We will spell out X,—1 and ¥,_1 in terms of X, and ¥,,. To see this, plug r, = (—@u)ru—1 + 7n—2
obtained from (s,) into ry41 = X7, + Y7r,—1. We then get

rN+1 = Xz((_Qn)rn—l + rn—?) + ann—l - (_Qan + Yn)rn—l + )Cnrn—Qa

hence (X,—1, Y,—1) = (—¢. X, + Yo, X,,) does the job. It is possible to use this inductively (as n
decreases) to find X’s and Y’s, starting with (Xy, Yy) = (—¢n, 1).

Definition. A prime number is a positive integer n whose positive integer divisor is 1 or itself.
Alternatively, we may define it as a positive integer whose integer divisors are {£1, £n}.

By Bezout, this is equivalent to the following: if @ and b are integers and n divides ab, then n
divides either @ or b. The latter definition allows us to prove:



Theorem 8 (the Fundamental Theorem of Arithmetic). Every integer is of the form
(—1=]]r"
P

for some non-negative integers 7o and 7, up to reordering of prime factors. The power 7 is the
maximum number of time p divides the integer. For example, 45 = 3% - 5507, = 0 if p is not 3
nor 5,73 =2,r5 = land roo = 0.

Let R be a relation on S. We let [a] = [a]g denote the subset of all b in S which are related to
a,ic. aRb. If R is an equivalence relation (satistying a set of conditions), then

aRb it and only if [a] = [b].
Theorem 9. Given a set S, there exists a bijective correspondence between
o the equivalence relations R on §,
o the partitions & (a set of subsets of S satisfying certain conditions) on S.

Proposition 10. Let n be a positive integer. Then (R, S) = (= Z), defined such thata = b
mod 7 if and only if n divides b — a (for integers @ and b), is an equivalence relation.

Defmition. Let Z, denote the set of equivalence classes [a] with respect to (=, Z).

Since a = bmod n if and only if [a] = [b], a lot of equivalence classes may be identified. Indeed,

Proposition 11. |Z,| = n.

Proposition 1 proves Proposition 11. Indeed, if @ is an integer (n is, by definition, a positive
integer), then there exists ¢ and 0 < 7 < n such that @ = ng + r. Therefore @ = r, i.e. [a] = [r].
The proof also elaborates that Z,, = {[0],[1], ..., [n — 1]}. The element [r] is nothing other than

the set of integers b with remainder 7 when divided by n (i.e. b = r mod n).

On Z,, we define +, —, X:

[a] +[0] = [a+0]
@] = [0] = [a—1]
[al[p] = [ad]
but no division. These do not depend on choice of representatives, ie. if @ = @’ mod n, then

(] + 8] = [@] + [b] ece.
No division is defined but:
Definition. We say that [a] of Z,, has mu]tip]icative inverse if there exists an integer b such that

[a][b] = [1] (or equivalently @b = 1 mod n). This plays the role of 1/[a] but not literally (1/[a] or

[1/a] simply does not make sense!). The multiplicative inverse is often written as [a] .



Remark. The multiplicative inverse, if exists, is unique. Suppose that [6] and [¢] are elements
of Z, such that [a][b] = [1] and [a][c] = [1]. Multiplying both sides of [¢][a] = [1] by [6], we obtain
[e]lal[6] = [1]0], i.c. [e] = [b].

Theorem 12. An element [a] of Z,, has multiplicative inverse if and only if ged(a, n) = 1.

The proof explains how to find the multiplicative inverse explicitly. If @ is an integer such that
ged(a,n) = 1 (which one can check in practice by Euclid’s algorithm), Euclid’s algorithm find
integers b and ¢ such that ab + nc = ged(a,n) = 1. Tt then follows that @b = 1 mod n, i.e.

[a]b] = [ab] = [1].

Proposition 13. An element [a] of Z,, has no multiplicative inverse if and only if there exists b,
not congruent to 0 mod n, such that [a][b] = [0].

Example. [2]4[3]6 = [0]6.

It is possible to compute the number of elements in Z,, with multiplicative inverses, using the
fundamental theorem of arithmetic: if = Hprf’, then it is computed by [, (p — 1)pr~t.
P
What is it useful for? It is possible to solve ‘linear congruence equations”: ax + b = ¢ mod n
(when ged(a,n) = 1). Indeed, [x] = [¢ — b][a] ™ where [a] ™! is the multiplicative inverse of [a]
(this is NOT 1/[a]). What if ged(a,n) > 1? Take Number Theory next year!



