Loot Muncay, I introdued a relaticn $\&$ or $\$=\mathbb{Z}$ by $\quad a, b \in \$=\mathbb{Z}$

$$
a \equiv b \quad \text { mud } n
$$

("a is cangthent to 6 medulo $n^{\prime \prime}$)
is and only if
$b-a$ is divisible by n.
Example $n=11$

$$
\begin{aligned}
& 12 \equiv 1 \quad \text { mod } 11 \\
& 3 \equiv 25
\end{aligned} \begin{aligned}
& \text { mad } 11
\end{aligned} ~ \begin{aligned}
& 12=(-11)
\end{aligned}
$$

is divisible by 11

$$
25-3=22 \text { is dữíle by } 11
$$

4 is NoI congtent to

$$
25 \bmod 11
$$

becanse $25-4=21$
and this is NOT diräblb by 11 !

$$
4 \equiv 25-\operatorname{man} 11
$$

I proved that

$$
\equiv \text { on } \mathbb{Z}
$$

is an equivalence. Tefation

Recall siven on equivulence relation

$$
R \text { on } S
$$

he witie [a] for

$$
a \in S \quad\{b \in S \mid
$$

$a\{b\}$
Speciakising this to

$$
\begin{array}{r}
a \in \mathbb{Z} \quad(R, s)=(\equiv, \mathbb{Z}) \\
{[a]=[a]_{n}=\{b \in \mathbb{Z} \mid}
\end{array}
$$

Example $n=11$

$$
[3]_{11}=\left\{b \in \mathbb{Z} \left\lvert\, \begin{array}{c}
3 \equiv b \\
\\
m d d 11
\end{array}\right.\right.
$$

[3]

$$
\begin{array}{r}
\{14,25,36 \cdots \\
-8,-19, \cdots\} \\
\{3+11 k \mid k \in \mathbb{Z}\}
\end{array}
$$

We defined addition
shotitution
multiplication
on He set \mathbb{Z}_{n} of eqnivalere classes

$$
\begin{align*}
& {[a]+[b] \stackrel{\text { det }}{\text { de }}[a+b]} \tag{a}\\
& {[a]-[b] \stackrel{\text { det }}{=}[a-b]} \\
& {[a][b] \stackrel{\text { det }}{=}[a b]}
\end{align*}
$$

$$
[a]+[b] \neq[a] \cup[b]
$$

I didu't detira "division" In purticalar. $\frac{[a]}{[b]} \neq\left[\frac{a}{b}\right]$

How do we tink chout dữisch?
Recall that $a, b \in \mathbb{4}$ "a divides b in \mathbb{Z} "
if then exists $c \in \mathbb{Z}$

$$
\text { sit. } b=a c
$$

We see c as $\frac{b}{a}$.
Def Let $[a] \in \mathbb{Z}_{n}$
If tho exists $b \in \mathbb{Z}$

$$
\text { st.) }[a][b]=[1],
$$

Hen we cull this [b] He multiplicative inverse of $[a]$
[b] plays to role of $[1] /$ ra] (but literally)
Example, $n=5$
What is te muttolicite inverse

$$
\text { in } \mathbb{Z}_{5} \text { ? if }[2]_{5}
$$

I need to find $b \in \mathbb{Z}$

$$
\text { S.t. }[2][b]=[1]
$$

Sind $\mathbb{Z}_{5}=\{[0],[1],[2]$ $[3],[4]\}$
try und eftor!
$(b)=60 ?$

$$
\begin{aligned}
{[2][0] } & =[2 \cdot 0] \\
& =[0] \neq[1] \\
{[2][1] } & =[2] \neq[1]
\end{aligned}
$$

(b) $\rightleftharpoons[1]$?
[b] $=[2]$

$$
\begin{aligned}
{[2][2] } & =[2 \cdot 2] \\
& =[4] \neq[1]
\end{aligned}
$$

$$
[b]=[3]
$$

$$
\begin{aligned}
{[2][3] } & =[6] \\
& =[1] .
\end{aligned}
$$

so [3] is te mutiticictice inverse of [2]

Ex $\quad n=6 \quad \mathbb{Z}_{6}$
What is te multiplicate
inverse of $[-1]$?

$$
\begin{aligned}
{[-1][-1] } & =[(-1) \cdot(-1)] \\
& =[1]
\end{aligned}
$$

So
[-1] is te multiplicative
inverse of $[-1]_{6}$
|

$$
[5]_{6}
$$

What is te multiplicative inverse
cf $[2]_{6}$ in \mathbb{Z}_{6} ?
No mutifplicate inurese
Why? If it did, thase wonld be $b \in \mathbb{Z}$

$$
\begin{aligned}
& \text { s.t. }[2][b]=[1] \\
& r \equiv \$ \bmod n \\
& \Leftrightarrow[r=[s] \| \\
& {[2 b]} \\
& \Rightarrow 2 b \equiv 1 \text { mod } 6 \\
& \Rightarrow 6 \text { divides } 2 b-1
\end{aligned}
$$

However He even integer 6 can hut divide the add integer $2 b-1$.
This is a contradiction!
Theorem 12
The equivalence class
[a] in \mathbb{Z}_{n}
has multiplication inverse
if and only if

$$
\operatorname{gcd}(a, n)=1
$$

Pf Let's prove "is bit" of the assertion.
die. if $\operatorname{cd}(a, n)=1$
Hon [a] has multiplicate inverse in $\mathbb{Z n}_{n}$
Sine $\operatorname{gcd}(a, n)=1$,
it follows from Theorem 7
(Bezont) that

$$
\exists b, c \in \mathbb{Z}
$$

\$.t.

$$
\begin{align*}
a b+n c & =\operatorname{gdt}(a, n) \\
= & =1
\end{align*}
$$

$\Rightarrow 1 \equiv a b \bmod n$
becanse $a b-1 \stackrel{*}{=} n c$
is diüstb by n

$$
\Rightarrow[1]=[a b]=[a][b]
$$

This bit of the proof explains how to work out He multiplicate inverse of [a]
Example, $n=2023$
What is the multiplicative inverse
of $[23]_{203}$ in \mathbb{Z}_{203} ?

I heed to work out

$$
r_{1} s \in \mathbb{Z}
$$

st. $\quad 2023 \cdot r+23 \$$

$$
=\operatorname{gcd}(2023,23)
$$

Endid's cigurithm:

$$
\begin{aligned}
& 2023=23 \cdot 87+22 \\
& 23=22+1 \\
& =1 \\
& \operatorname{g*t}(2023,23)
\end{aligned}
$$

$$
\begin{aligned}
1 & =23-1 \cdot 22 \\
& =23-1 \cdot(2023-23 \cdot 81) \\
& =88 \cdot 23+(-1) \cdot 2023
\end{aligned}
$$

So [88] is the multiplicate invere in \mathbb{Z}_{202}

