## MTH5113 (2023/24): Problem Sheet 2 Solutions

(1) (Warm-up) Compute each of the following:
(a) Consider the vector-valued function

$$
\mathbf{f}: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad \mathbf{f}(\mathrm{t})=\left(\mathrm{t}^{2}, \mathrm{t}^{3}-1\right)
$$

(i) Compute $\mathbf{f}^{\prime}(\mathrm{t})$ for every $\mathrm{t} \in \mathbb{R}$.
(ii) Find the values $\mathbf{f}^{\prime}(0), \mathbf{f}^{\prime}(1)$, and $\mathbf{f}^{\prime}(-2)$.
(b) Consider the vector-valued function

$$
\mathbf{g}:(0,1) \rightarrow \mathbb{R}^{3}, \quad \mathbf{g}(\mathrm{t})=\left(\ln \mathrm{t}, \ln (1-\mathrm{t}), \mathrm{e}^{3 \mathrm{t}}+\mathrm{t}\right)
$$

(i) What happens to $\mathbf{g}(\mathrm{t})$ as t approaches 0 ? As t approaches 1 ?
(ii) Compute $\mathbf{g}^{\prime}(\mathrm{t})$ for every $\mathrm{t} \in \mathbb{R}$.
(iii) Compute the second derivative $\mathbf{g}^{\prime \prime}(\mathrm{t})$ for every $\mathrm{t} \in \mathbb{R}$.
(a) These are direct computations:
(i) To find $\mathbf{f}^{\prime}(\mathbf{t})$, we differentiate each component of $\mathbf{f}$ :

$$
f^{\prime}(t)=\left(\frac{d}{d t}\left(t^{2}\right), \frac{d}{d t}\left(t^{3}-1\right)\right)=\left(2 t, 3 t^{2}\right)
$$

(ii) We substitute $t=0, t=1$, and $t=-2$ into the preceding formula:

$$
\begin{aligned}
\mathbf{f}^{\prime}(0) & =\left(2 \cdot 0,3 \cdot 0^{2}\right)=(0,0), \\
\mathbf{f}^{\prime}(1) & =\left(2 \cdot 1,3 \cdot 1^{2}\right)=(2,3), \\
\mathbf{f}^{\prime}(-2) & =\left(2 \cdot(-2), 3 \cdot(-2)^{2}\right)=(-4,12) .
\end{aligned}
$$

(b) These are also direct computations:
(i) As $t$ approaches 0 , the $x$-component $(\ln t)$ of $\mathbf{g}(t)$ tends to $-\infty$, while the $y$ - and $z$-components have finite limits ( 0 and 1 , respectively):

$$
\lim _{t \searrow 0} \mathbf{g}(\mathrm{t})=(-\infty, 0,1) .
$$

Also, as $t$ approaches 1 , the $\mathbf{y}$-component $(\ln (1-t))$ of $\mathbf{g}(t)$ tends to $-\infty$, while the $x$ - and $z$-components have finite limits ( 0 and $e^{3}+1$, respectively).

$$
\lim _{t \nmid 1} \mathbf{g}(\mathrm{t})=\left(0,-\infty, e^{3}+1\right)
$$

(ii) Recalling the calculus identities

$$
\frac{d}{d t}(\ln t)=\frac{1}{t}, \quad \frac{d}{d t}\left(e^{t}\right)=e^{t}, \quad t \in(0,1)
$$

as well as the chain rule, we obtain that

$$
\begin{aligned}
\mathrm{g}^{\prime}(\mathrm{t}) & =\left(\frac{\mathrm{d}}{\mathrm{dt}}(\ln \mathrm{t}), \frac{\mathrm{d}}{\mathrm{dt}}[\ln (1-\mathrm{t})], \frac{\mathrm{d}}{\mathrm{dt}}\left(e^{3 \mathrm{t}}+\mathrm{t}\right)\right) \\
& =\left(\frac{1}{\mathrm{t}}, \frac{1}{1-\mathrm{t}} \cdot \frac{\mathrm{~d}}{\mathrm{dt}}(1-\mathrm{t}), e^{3 \mathrm{t}} \cdot \frac{\mathrm{~d}}{\mathrm{dt}}(3 \mathrm{t})+1\right) \\
& =\left(\frac{1}{\mathrm{t}}, \frac{1}{\mathrm{t}-1}, 3 e^{3 \mathrm{t}}+1\right)
\end{aligned}
$$

(iii) To compute $\mathbf{g}^{\prime \prime}(\mathrm{t})$, we differentiate the preceding formula yet again:

$$
\begin{aligned}
g^{\prime \prime}(t) & =\left(\frac{d}{d t}\left(\frac{1}{t}\right), \frac{d}{d t}\left(\frac{1}{t-1}\right), \frac{d}{d t}\left(3 e^{3 t}+1\right)\right) \\
& =\left(-\frac{1}{t^{2}},-\frac{1}{(t-1)^{2}}, 9 e^{3 t}\right)
\end{aligned}
$$

(2) (Warm-up) Let $\mathbf{A}$ denote the vector-valued function

$$
\mathbf{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad \mathbf{A}(x, y, z)=(x(1-z), y(1-z))
$$

(a) Compute the partial derivatives $\partial_{1} \mathbf{A}(x, y, z), \partial_{2} \mathbf{A}(x, y, z)$, and $\partial_{3} \mathbf{A}(x, y, z)$ at every point $(x, y, z) \in \mathbb{R}^{3}$.
(b) Find $\partial_{2} \mathbf{A}(1,0,3)$ and $\partial_{3} \mathbf{A}(0,-1,-1)$.
(a) To find $\partial_{1} \mathbf{A}(x, y, z)$, we take the corresponding derivative of each component of $\mathbf{A}$ :

$$
\partial_{1} \mathbf{A}(x, y, z)=\left(\partial_{x}[x(1-z)], \partial_{x}[y(1-z)]\right)=(1-z, 0) .
$$

In the last step, we treated $y$ and $z$ as constants and differentiated with respect to $x$. The remaining partial derivatives of $\mathbf{A}$ are computed analogously:

$$
\begin{aligned}
& \partial_{2} \mathbf{A}(x, y, z)=\left(\partial_{y}\left[x(1-z), \partial_{y}[y(1-z)]\right)=(0,1-z),\right. \\
& \partial_{3} \mathbf{A}(x, y, z)=\left(\partial_{z}\left[x(1-z), \partial_{z}[y(1-z)]\right)=(-x,-y) .\right.
\end{aligned}
$$

(Make sure your answers are 2-dimensional vectors!)
(b) Substituting $(x, y, z)=(1,0,3)$ to the above formula for $\partial_{2} \mathbf{A}(x, y, z)$ yields

$$
\partial_{2} \mathbf{A}(1,0,3)=(0,1-3)=(0,-2)
$$

Similarly, substituting $(x, y, z)=(0,-1,-1)$ into the formula for $\partial_{3} \mathbf{A}(x, y, z)$ yields

$$
\partial_{3} \mathbf{A}(0,-1,-1)=(-0,-(-1))=(0,1) .
$$

(3) (Warm-up) Let $\mathbf{F}$ be the vector field on $\mathbb{R}^{2}$ defined via the formula

$$
\mathbf{F}(x, y)=(x-y, x+y)_{(x, y)}
$$

(a) Compute the following: (i) $\mathbf{F}(1,-1)$; (ii) $\mathbf{F}(-2,-1)$; (iii) $\mathbf{F}\left(-1, \frac{1}{2}\right)$.
(b) Plot the three tangent vectors from part (a) onto a Cartesian plane.
(a) Each of these is a direct computation:
(i) $\mathbf{F}(1,-1)=(1-(-1), 1+(-1))_{(1,-1)}=(2,0)_{(1,-1)}$.
(ii) $\mathbf{F}(-2,-1)=(-2-(-1),-2+(-1))_{(-2,-1)}=(-1,-3)_{(-2,-1)}$.
(iii) $\mathbf{F}\left(-1, \frac{1}{2}\right)=\left(-1-\frac{1}{2},-1+\frac{1}{2}\right)_{\left(-1, \frac{1}{2}\right)}=\left(-\frac{3}{2},-\frac{1}{2}\right)_{\left(-1, \frac{1}{2}\right)}$.
(b) The tangent vectors are drawn below:

(4) [Tutorial] Consider the following vector-valued function:

$$
\mathbf{h}:(0, \infty) \rightarrow \mathbb{R}^{2}, \quad \mathbf{h}(\mathrm{t})=(\mathrm{t} \cos \mathrm{t}, \mathrm{t} \sin \mathrm{t})
$$

(a) Sketch the values $\mathbf{h}(\mathrm{t})$, for all $0<\mathrm{t}<4 \pi$. Also, plot the values of $\mathbf{h}$ on computer (see the Additional Resources section on the QMPlus page).
(b) Compute $\mathbf{h}(\pi)$ and $\mathbf{h}\left(\frac{5 \pi}{2}\right)$.
(c) Compute $\mathbf{h}^{\prime}(\pi)$ and $\mathbf{h}^{\prime}\left(\frac{5 \pi}{2}\right)$.
(d) Draw $\mathbf{h}^{\prime}(\pi)_{\mathbf{h}(\pi)}$ and $\mathbf{h}^{\prime}\left(\frac{5 \pi}{2}\right)_{\mathbf{h}\left(\frac{5 \pi}{2}\right)}$ on your sketch in part (a).
(a) The sketch is below, with the image of $\mathbf{h}$ drawn in red.

(b) The desired values of $\mathbf{h}$ are below:

$$
\begin{aligned}
\mathbf{h}(\pi) & =(\pi \cos \pi, \pi \sin \pi)=(-\pi, 0) \\
\mathbf{h}\left(\frac{5 \pi}{2}\right) & =\left(\frac{5 \pi}{2} \cos \frac{5 \pi}{2}, \frac{5 \pi}{2} \sin \frac{5 \pi}{2}\right)=\left(0, \frac{5 \pi}{2}\right)
\end{aligned}
$$

(c) Taking a derivative of $\mathbf{h}$ (using the product rule) yields

$$
\mathbf{h}^{\prime}(\mathrm{t})=(\cos \mathrm{t}-\mathrm{t} \sin \mathrm{t}, \sin \mathrm{t}+\mathrm{t} \cos \mathrm{t}) .
$$

In particular, setting $t=\pi$ and $t=\frac{5 \pi}{2}$ yields

$$
\begin{aligned}
\mathbf{h}^{\prime}(\pi) & =(\cos \pi-\pi \sin \pi, \sin \pi+\pi \cos \pi)=(-1,-\pi), \\
\mathbf{h}^{\prime}\left(\frac{5 \pi}{2}\right) & =\left(\cos \frac{5 \pi}{2}-\frac{5 \pi}{2} \sin \frac{5 \pi}{2}, \sin \frac{5 \pi}{2}+\frac{5 \pi}{2} \cos \frac{5 \pi}{2}\right)=\left(-\frac{5 \pi}{2}, 1\right),
\end{aligned}
$$

(d) The tangent vectors

$$
\mathbf{h}^{\prime}(\pi)_{\mathbf{h}(\pi)}=(-1, \pi)_{(-\pi, 0),} \quad \mathbf{h}^{\prime}\left(\frac{5 \pi}{2}\right)_{\mathbf{h}\left(\frac{5 \pi}{2}\right)}=\left(-\frac{5 \pi}{2}, 1\right)_{\left(0, \frac{5 \pi}{2}\right)},
$$

are drawn as green arrows on the diagram in part (a).
(5) [Marked] Let $\beta$ be the vector-valued function

$$
\beta:(-2,2) \times(0,2 \pi) \rightarrow \mathbb{R}^{3}, \quad \beta(u, v)=\left\{\frac{3 u}{2}-\frac{u \cos (v)}{\sqrt{1+u^{2}}}, \sin (v), \frac{3 u^{2}}{4}+\frac{\cos (v)}{\sqrt{1+u^{2}}}\right\} .
$$

(a) Sketch the image of $\beta$ (i.e. plot all values $\beta(u, v)$, for $(u, v)$ in the domain of $\beta$ ).
(b) On the sketch in part (a), indicate (i) the path obtained by holding $v=\pi / 2$ and varying $u$, and (ii) the path obtained by holding $u=0$ and varying $v$.
(c) Compute the following quantities:

$$
\beta\left(0, \frac{\pi}{2}\right), \quad \partial_{1} \beta\left(0, \frac{\pi}{2}\right), \quad \partial_{2} \beta\left(0, \frac{\pi}{2}\right) .
$$

(d) Draw the following tangent vectors on your sketch in part (a):

$$
X_{1}=\partial_{1} \beta\left(0, \frac{\pi}{2}\right)_{\beta\left(0, \frac{\pi}{2}\right)}, \quad X_{2}=\partial_{2} \beta\left(0, \frac{\pi}{2}\right)_{\beta\left(0, \frac{\pi}{2}\right)} .
$$

(a) The image of $\beta$ is drawn below. [1 mark for mostly correct drawing]
(b) The path in (i) is drawn below in red (a parabola), while the path in (ii) is drawn in blue (a circle). [1 mark for mostly correct drawings]

(c) We first compute the partial derivatives of $\beta$ : $[1 \mathrm{mark}]$

$$
\begin{aligned}
& \partial_{1} \beta(u, v)=\left\{\frac{3}{2}-\frac{\cos (v)}{\left(1+u^{2}\right)^{3 / 2}}, 0, \frac{3 u}{2}-\frac{u \cos (v)}{\left(1+u^{2}\right)^{3 / 2}}\right\}, \\
& \partial_{2} \beta(u, v)=\left\{\frac{u \sin (v)}{\sqrt{1+u^{2}}}, \cos (v),-\frac{\sin (v)}{\sqrt{1+u^{2}}}\right\} .
\end{aligned}
$$

Evaluating at $(u, v)=\left(0, \frac{\pi}{2}\right)$, we obtain [1 mark]

$$
\beta\left(0, \frac{\pi}{2}\right)=(0,1,0), \quad \partial_{1} \beta\left(0, \frac{\pi}{2}\right)=\left(\frac{3}{2}, 0,0\right), \quad \partial_{2} \beta\left(0, \frac{\pi}{2}\right)=(0,0,-1)
$$

(d) These tangent vectors are drawn in the diagram from parts (a) and (b) ( $\mathrm{X}_{1}$ in magenta, and $X_{2}$ in dashed cyan). [1 mark for mostly correct arrows]
(6) (Compute ' $n$ ' plot) Let $\lambda$ denote the vector-valued function

$$
\lambda: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad \lambda(t)=\left(t, t^{2}-1\right)
$$

(a) Compute the following: $\lambda(-2), \lambda(-1), \lambda(0), \lambda(1)$, and $\lambda(2)$.
(b) Compute the following: $\lambda^{\prime}(-2), \lambda^{\prime}(-1), \lambda^{\prime}(0), \lambda^{\prime}(1)$, and $\lambda^{\prime}(2)$.
(c) Sketch the values $\lambda(\mathrm{t})$, for all $-3<\mathrm{t}<3$, on a Cartesian plane.
(d) Draw the following tangent vectors as arrows on your sketch in part (a):

$$
\lambda^{\prime}(-2)_{\lambda(-2)}, \quad \lambda^{\prime}(-1)_{\lambda(-1)}, \quad \lambda^{\prime}(0)_{\lambda(0)}, \quad \lambda^{\prime}(1)_{\lambda(1)}, \quad \lambda^{\prime}(2)_{\lambda(2)} .
$$

(a) The desired values of $\lambda$ are below:

$$
\begin{aligned}
\lambda(-2) & =\left(-2,(-2)^{2}-1\right)=(-2,3), \\
\lambda(-1) & =\left(-1,(-1)^{2}-1\right)=(-1,0), \\
\lambda(0) & =\left(0,0^{2}-1\right)=(0,-1), \\
\lambda(1) & =\left(1,1^{2}-1\right)=(1,0), \\
\lambda(2) & =\left(2,2^{2}-1\right)=(2,3) .
\end{aligned}
$$

(b) First, note that the derivative of $\lambda$ satisfies

$$
\lambda^{\prime}(t)=(1,2 t) .
$$

Thus, taking $t=-2,-1,0,1,2$, we obtain

$$
\begin{aligned}
\lambda^{\prime}(-2) & =(1,2 \cdot(-2))=(1,-4), \\
\lambda^{\prime}(-1) & =(1,2 \cdot(-1))=(1,-2), \\
\lambda^{\prime}(0) & =(1,2 \cdot 0)=(1,0), \\
\lambda^{\prime}(1) & =(1,2 \cdot 1)=(1,2), \\
\lambda^{\prime}(2) & =(1,2 \cdot 2)=(1,4) .
\end{aligned}
$$

(c) The sketch is below, with the image of $\lambda$ drawn in red. (The most direct way to sketch this is to note that $\lambda$ is the graph of the parabolic function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-1$. In addition, you could use the answers in parts (a) and (b) to help you draw $\lambda$.)

(d) From parts (b) and (c), we have that

$$
\begin{aligned}
\lambda^{\prime}(-2)_{\lambda(-2)} & =(1,-4)_{(-2,3)}, \\
\lambda^{\prime}(-1)_{\lambda(-1)} & =(1,-2)_{(-1,0)}, \\
\lambda^{\prime}(0)_{\lambda(0)} & =(1,0)_{(0,-1)}, \\
\lambda^{\prime}(1)_{\lambda(1)} & =(1,2)_{(1,0)}, \\
\lambda^{\prime}(2)_{\lambda(2)} & =(1,4)_{(2,3)} .
\end{aligned}
$$

These are drawn as green arrows on the diagram in part (c).
(7) (Compute ' $n$ ' plot II) Consider the vector-valued function

$$
\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad \sigma(u, v)=((2+\cos u) \cos v,(2+\cos u) \sin v, \sin u)
$$

(See also Question 8 from Problem Sheet 1.)
(a) Sketch the image of $\sigma$. (Use a computer to help if needed; see the Additional Resources section on the QMPlus page)
(b) On the sketch in part (a), indicate (i) the path obtained by holding $u=\frac{\pi}{2}$ and varying $v$, and (ii) the path obtained by holding $v=\frac{\pi}{2}$ and varying $u$.
(c) Compute the partial derivatives $\partial_{1} \sigma(u, v)$ and $\partial_{2} \sigma(u, v)$ for all $(u, v) \in \mathbb{R}^{2}$.
(d) Draw the following tangent vectors on your sketch in part (a):

$$
X_{1}=\partial_{1} \sigma\left(\frac{\pi}{2}, \frac{\pi}{2}\right)_{\sigma\left(\frac{\pi}{2}, \frac{\pi}{2}\right)}, \quad X_{2}=\partial_{2} \sigma\left(\frac{\pi}{2}, \frac{\pi}{2}\right)_{\sigma\left(\frac{\pi}{2}, \frac{\pi}{2}\right)} .
$$

(a) A sketch is given below part (b), with the image of $\sigma$ drawn in grey.
(b) The path in (i) is drawn below in red, while the path in (ii) is drawn in green.

(c) To find $\partial_{1} \sigma(u, v)$ and $\partial_{2} \sigma(u, v)$, we differentiate each component:

$$
\begin{aligned}
& \partial_{1} \sigma(u, v)=(-\sin u \cos v,-\sin u \sin v, \cos u), \\
& \partial_{2} \sigma(u, v)=(-(2+\cos u) \sin v,(2+\cos u) \cos v, 0) .
\end{aligned}
$$

(d) First, we compute

$$
\sigma\left(\frac{\pi}{2}, \frac{\pi}{2}\right)=(0,2,1), \quad \partial_{1} \sigma\left(\frac{\pi}{2}, \frac{\pi}{2}\right)=(0,-1,0), \quad \partial_{2} \sigma\left(\frac{\pi}{2}, \frac{\pi}{2}\right)=(-2,0,0)
$$

As a result, we have that

$$
X_{1}=(0,-1,0)_{(0,2,1)}, \quad X_{2}=(-2,0,0)_{(0,2,1)}
$$

The tangent vectors $X_{1}$ and $X_{2}$ are drawn in the diagram from parts (a) and (b).
(8) (Gradients ' $n$ ' plot) Consider the function

$$
p: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad p(x, y)=x-y^{2}
$$

(a) Sketch the following sets on a Cartesian plane:
(i) $\left\{(x, y) \in \mathbb{R}^{2} \mid p(x, y)=0\right\}$.
(ii) $\left\{(x, y) \in \mathbb{R}^{2} \mid p(x, y)=2\right\}$.
(iii) $\left\{(x, y) \in \mathbb{R}^{2} \mid p(x, y)=-2\right\}$.
(b) Compute the gradient $\nabla \mathfrak{p}(x, y)$ for all $(x, y) \in \mathbb{R}^{2}$.
(c) Plot the following values onto your sketch from part (a):
(i) $\nabla \mathfrak{p}(0,0)$.
(ii) $\nabla \mathfrak{p}(-1,-1)$.
(ii) $\nabla \mathfrak{p}(-1,1)$.
(a) The three sets are sketched below in (i) red, (ii) orange, and (iii) pink:

(b) The partial derivatives of $p$ are

$$
\partial_{1} p(x, y)=1, \quad \partial_{2} p(x, y)=-2 y
$$

Thus, the gradient of $p$ is

$$
\nabla p(x, y)=\left(\partial_{1} p(x, y), \partial_{2} p(x, y)\right)_{(x, y)}=(1,-2 y)_{(x, y)}
$$

(c) Substituting the appropriate values for $x$ and $y$, we obtain that
(i) $\nabla \mathfrak{p}(0,0)=(1,0)_{(0,0)}$.
(ii) $\nabla \mathfrak{p}(-1,-1)=(1,2)_{(-1,-1)}$.
(iii) $\nabla \mathfrak{p}(-1,1)=(1,-2)_{(-1,1)}$.

The corresponding arrows are drawn in the plot from (a) in (i) blue, (ii) purple, (iii) green.
(9) (Connections to "Convergence and Continuity") Consider the following subsets of $\mathbb{R}^{2}$ :

$$
V=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0\right\}, \quad \mathrm{L}=\left\{(x, y) \in \mathbb{R}^{2} \mid x=0\right\}
$$

(a) Give an informal justification of the following: (i) V is open; (ii) L is not open.
(b) (Not examinable) Give a rigorous proof of the two statements in part (a).
(c) Is the following subset of $\mathbb{R}^{2}$ connected:

$$
\mathrm{Q}=\left\{(x, y) \in \mathbb{R}^{2} \mid y \neq 0\right\} ?
$$

Give a brief (informal) justification of your answer.
(a) Informal justifications for both statements are given below:
(i) Consider a point $(x, y) \in V$, so that $x>0$. Suppose you take a step away from $(x, y)$, in any direction, to another point $\left(x^{\prime}, y^{\prime}\right)$. Then, as long as that step is small enough, we would still have $x^{\prime}>0$, and hence $\left(x^{\prime}, y^{\prime}\right) \in \mathrm{V}$. Thus, by definition, V is open.
(ii) Consider the point $(0,0) \in L$. Suppose you take a step away from $(0,0)$ in the $x$ direction. Then, no matter how small of a step you take, you will always no longer be on L. Thus, L violates the definition of openness and hence is not open.
(b) Formal proofs of both statements are given below:
(i) To prove that V is open, we must establish the following statement:
(*) For any $(x, y) \in \mathrm{V}$, there exists $\delta>0$ such that for any $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2}$ satisfying $\left|\left(x^{\prime}, y^{\prime}\right)-(x, y)\right|<\delta$, we have $\left(x^{\prime}, y^{\prime}\right) \in \mathrm{V}$.

Let $(x, y)$ be an arbitrary element of V ; note that $\mathrm{x}>0$. Moreover, let us choose $\delta=x>0$. Then, given any $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2}$ such that $\left|\left(x^{\prime}, y^{\prime}\right)-(x, y)\right|<x$, we have that

$$
x>\left|\left(x^{\prime}, y^{\prime}\right)-(x, y)\right| \geq\left|x^{\prime}-x\right|
$$

and it follows that $x^{\prime}>0$. As a result, $\left(x^{\prime}, y^{\prime}\right) \in \mathrm{V}$, and hence $(*)$ is proved.
(ii) Negating the definition of open subsets, we see that we must prove the following:
$(\star)$ There exists some $(x, y) \in L$ such that for every $\delta>0$, there exists $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2}$ such that $\left|\left(x^{\prime}, y^{\prime}\right)-(x, y)\right|<\delta$, but $\left(x^{\prime}, y^{\prime}\right) \notin \mathrm{L}$.

Let us choose $(x, y)=(0,0) \in L$. Given an arbitrary $\delta>0$, we choose the point $\left(x^{\prime}, y^{\prime}\right)=\left(\frac{\delta}{2}, 0\right)$. In particular, we have that $\left(\frac{\delta}{2}, 0\right) \notin \mathrm{L}$, and that

$$
\left|\left(x^{\prime}, y^{\prime}\right)-(x, y)\right|=\left|\left(\frac{\delta}{2}, 0\right)-(0,0)\right|=\frac{\delta}{2}<\delta
$$

In particular, the above proves the statement ( $\star$ ).
(c) The set Q is not connected.

To justify this, we consider two points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in Q$, with $y_{1}<0<y_{2}$. Then, any path that connects $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$ must pass through the (horizontal) line $y=0$ (this comes from the intermediate value theorem), and hence this path must leave Q .
(10) (Good derivative, bad derivative)
(a) (Not examinable) Give an example of a function $b: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that (i) $\partial_{1} \mathrm{~b}(\mathrm{x}, \mathrm{y})$ exists for all $(x, y) \in \mathbb{R}^{2}$, but (ii) $\partial_{2} b(x, y)$ fails to exist for some $(x, y)$.
(b) (Fun! But not examinable) Give an example of a function $\mathrm{b}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that (i) $\partial_{1} b(x, y)$ exists for all $(x, y) \in \mathbb{R}^{2}$, but (ii) $\partial_{2} b(x, y)$ fails to exist for any $(x, y)$.
(a) One example of such a function $b$ is the following:

$$
b: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad b(x, y)= \begin{cases}1 & \text { if } y=0 \\ 0 & \text { if } y \neq 0\end{cases}
$$

Note that b is always constant if we hold y constant and vary only with respect to x . As a result, $\partial_{1} b(x, y)=0$ for all $(x, y) \in \mathbb{R}^{2}$.

On the other hand, if we fix $x=0$, for instance, and we vary in $y$, we see that

$$
b(0, y)= \begin{cases}1 & \text { if } y=0 \\ 0 & \text { if } y \neq 0\end{cases}
$$

In particular, this fails to be continuous at $y=0$, hence we cannot differentiate with respect to $y$ there. As a result, $\partial_{2} b(0,0)$ fails to exist.
(b) One example of such a function $b$ is the following:

$$
b: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad b(x, y)= \begin{cases}1 & \text { if } y \in \mathbb{Q} \\ 0 & \text { if } y \notin \mathbb{Q}\end{cases}
$$

(Here, $\mathbb{Q}$ is the set of rational numbers.)
Again, b is always constant if we hold y constant and vary only with respect to x . As a result, $\partial_{1} \mathrm{~b}(x, y)=0$ for all $(x, y) \in \mathbb{R}^{2}$. On the other hand, if we fix any $x$-value and vary
in $y$, then the resulting function $y \mapsto b(x, y)$ fails to be continuous at any value of $y$. As a result, $\partial_{2} b(x, y)$ cannot exist at any $(x, y) \in \mathbb{R}^{2}$.

