MTH5113 (2023/24): Problem Sheet 2
Solutions

(1) (Warm-up) Compute each of the following:

(a) Consider the vector-valued function
f:R—- R f(t)=(t5—1).

(i) Compute f'(t) for every t € R.
(ii) Find the values f'(0), f'(1), and f'(—2).

(b) Consider the vector-valued function
g:(0,1) =R g(t)=(nt,In(1 —1t), e +1t).

(i) What happens to g(t) as t approaches 07 As t approaches 17
(ii) Compute g’(t) for every t € R.
(iii) Compute the second derivative g”(t) for every t € R.
(a) These are direct computations:

(i) To find f’(t), we differentiate each component of f:

F(t) — <<;it(t2)’ S 1)) — (2t,38)

(ii)) We substitute t =0, t = 1, and t = —2 into the preceding formula:

£'(0) = (2-0,3-0%) = (0,0),
(1) =(2-1,3-1%) = (2,3),
f'(=2) = (2-(=2),3- (=2)*) = (-4,12).

(b) These are also direct computations:



(i) As t approaches 0, the x-component (Int) of g(t) tends to —oo, while the y- and

z-components have finite limits (0 and 1, respectively):

{I{%g(t) = (—00,0,1).

Also, as t approaches 1, the y-component (In(1 —t)) of g(t) tends to —oco, while the

x- and z-components have finite limits (0 and e + 1, respectively).

: o o 3
gr]lg(t)—(O, oo, e’ +1).

(ii) Recalling the calculus identities
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as well as the chain rule, we obtain that

g/(t) = (d(lnt), i1 -, & (e3f+t))

dt dt ’dt
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(iii) To compute g”(t), we differentiate the preceding formula yet again:

g (A T\ d [ 1 d . .
g'(t) = <dt (t)’dt <t—1>’dt(363 +1)>

— 1 1 3t
_( @ (t_1)2,9e )

(2) (Warm-up) Let A denote the vector-valued function
A:Rs_”Rza A(X)U)Z):(X“ _Z)>y(1_2))-

(a) Compute the partial derivatives 91A(x,y,z), 02A(x,y,z), and 03A(x,y,z) at every
point (x,y,z) € R3.

(b) Find 3,A(1,0,3) and 3;A(0,—1,—1).



(a) To find 9;A(x,y,z), we take the corresponding derivative of each component of A:
01A(x,y,2z) = (04[x(1 —2)], 0, [y(1 — 2)]) = (1 — z,0).

In the last step, we treated y and z as constants and differentiated with respect to x. The

remaining partial derivatives of A are computed analogously:

azA(X,%Z) - (ay[X” _Z))ay[y“ _Z)]) - (O)] —Z),
asA(X,%Z) - (az[X” *Z)) az[y“ *Z)]) — (_X) _y)

(Make sure your answers are 2-dimensional vectors!)

(b) Substituting (x,y,z) = (1,0,3) to the above formula for 0,A(x,y, z) yields
0,A(1,0,3) = (0,1 —3) = (0,-2).

Similarly, substituting (x,y,z) = (0,—1,—1) into the formula for 9;A(x,y,z) yields

03A(0,—1,—1) = (=0,—(=1)) = (0, T).

(3) (Warm-up) Let F be the vector field on R? defined via the formula

F(va) = (x—y,x+y)(x,y)-

(a) Compute the following: (i) F(1,—1); (ii) F(—2,—1); (iii) F(—1, 5).

N[—

(b) Plot the three tangent vectors from part (a) onto a Cartesian plane.

(a) Each of these is a direct computation:
i) F(I,=1) =0 —=(=1),T+(=1))g-1n =1(2,0)a,-1).

(i) F(=2,-1) = (=2 (=1, =2+ (=1)) 2,1y = (=1, =3)(2,-1).
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(1 =51+ Z)(—L%) - (—z>—§)(_1’%).

(b) The tangent vectors are drawn below:
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(4) [Tutorial] Consider the following vector-valued function:
h: (0,00) — R, h(t) = (tcost, tsint).

(a) Sketch the values h(t), for all 0 < t < 47t. Also, plot the values of h on computer (see
the Additional Resources section on the QMPlus page).

(b) Compute h(7) and h(%").
(c) Compute h'(7r) and h’(%”).

(d) Draw h'(m),,, and h’ (%‘) on your sketch in part (a).

h(2F)

(a) The sketch is below, with the image of h drawn in red.
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(b) The desired values of h are below:

h(7t) = (7t cosm, 7t sinmt) = (—m, 0),

h 5m 5m 57t 5t . 5w 0 51

— | == cos—,—sin— | = —

2 2 272 2 T2 )
(c) Taking a derivative of h (using the product rule) yields

h'(t) = (cost — tsint,sint + tcost).
In particular, setting t =7 and t = 57“ yields
h'(71) = (cos 7t — 7t sin7t, sin7t + 7t cos 1) = (—1, —7),

, (5T St bm . Sm  Sm bm  5m o7t
h 5 )= 0037—731n7,s1n7+7cos7 = —7,1 ,

(d) The tangent vectors
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are drawn as green arrows on the diagram in part (a).
(5) [Marked] Let 3 be the vector-valued function
3u  ucos(v) . 3u?

B:(=2,2)x (0,2 5,  Blu,v) = { v)

<in n cos(v)
2 VT+u? 4 VTS
(a) Sketch the image of (3 (i.e. plot all values 3(u,v), for (u,v) in the domain of {3).

(b) On the sketch in part (a), indicate (i) the path obtained by holding v = m/2 and
varying u, and (ii) the path obtained by holding u = 0 and varying v.

(c) Compute the following quantities:

503, a6l ()



(d) Draw the following tangent vectors on your sketch in part (a):

Tt Tt

X1 =0:B (O’ E)B(O E)’ X2 =0:B (0) E)ﬁ(o,g)’

’2

(a) The image of 3 is drawn below. [1 mark for mostly correct drawing]

(b) The path in (i) is drawn below in red (a parabola), while the path in (ii) is drawn in

blue (a circle). [1 mark for mostly correct drawings]

(c) We first compute the partial derivatives of : [1 mark]

3 )3 cos(v) 3u ucos(v)
1B(u,v) = i*m, )T*W )

323 (1v) = {usin(\)) cos(v), — sin(v) }
SRS BV IETr AV, Pl
Evaluating at (u,v) = (0,5), we obtain [1 mark]

B (og) —(0,1,0), 0B (og) - (%,0,0), 2,p (og) — (0,0,—1).
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(d) These tangent vectors are drawn in the diagram from parts (a) and (b) (X; in magenta,

and X, in dashed cyan). [1 mark for mostly correct arrows]
(6) (Compute ‘n’ plot) Let A denote the vector-valued function
AR SR, A =(t,t2—1).
(a) Compute the following: A(—=2), A(—1), A(0), A(1), and A(2).
(b) Compute the following: A’'(—=2), A'(—1), A’(0), A’(1), and A'(2).
(c) Sketch the values A(t), for all =3 < t < 3, on a Cartesian plane.

(d) Draw the following tangent vectors as arrows on your sketch in part (a):

(b) First, note that the derivative of A satisfies
A(t) = (1,2t).

Thus, taking t = —2,—1,0,1,2, we obtain

'(=2)=(1,2-(=2)) = (1,-4),

(=1 =0,2-(=1))=(,-2),
'(0) =(1,2-0) = (1,0),
‘M=0,2-1=(1,2),
"2)=(1,2-2) = (1,4).



(c) The sketch is below, with the image of A drawn in red. (The most direct way to sketch
this is to note that A is the graph of the parabolic function f(x) = x* — 1. In addition, you
could use the answers in parts (a) and (b) to help you draw \.)

y
8 | _)A
6 1
4 1
A (=2)-2) A (2)a2)
2 1
)/( 1')/‘\%! Al“)/\u) X
6 -4 2\ 2 6
5 LA/(O)?\(O)

N (=22 = (1,—4) 23,
AN (=1 = (1,-2) (10),
A (0)a) = (1,0)0-1)

AN (D = (1,2) .0,
N2 = (1,4) 23

These are drawn as green arrows on the diagram in part (c).
(7) (Compute ‘n’ plot II) Consider the vector-valued function
o:R?> - R3, o(u,v) = ((24 cosu) cosv, (24 cosu) sinv, sinu).

(See also Question 8 from Problem Sheet 1.)

(a) Sketch the image of 0. (Use a computer to help if needed; see the Additional Resources
section on the QM Plus page)



(b) On the sketch in part (a), indicate (i) the path obtained by holding u = 5 and varying
v, and (ii) the path obtained by holding v = % and varying u.

(c) Compute the partial derivatives 010(w,v) and 9,0(u,v) for all (u,v) € R?.

(d) Draw the following tangent vectors on your sketch in part (a):

Xi =00 (3 ﬂ)o(;ﬂz‘)’ X =20 (3 g)d’;

2’2 )

(S1E}

(a) A sketch is given below part (b), with the image of ¢ drawn in grey.

(b) The path in (i) is drawn below in red, while the path in (ii) is drawn in green.

X, 31z

2 o
1 —u=7
—v=7

0

_,1 J

i

-3

(c) To find 9y0(u,v) and 9,0(u,v), we differentiate each component:

010(u,v) = (—sinucosv, —sinusinv, cosu),

0,0(u,v) = (—(2+ cosu) sinv, (2 + cosu) cosv, 0).

(d) First, we compute

o(gg) —(0,2,1), am(;—‘,;) — (0,—1,0),



As a result, we have that
X3 = (0,—1,0)(0.2,1); X2 =(—2,0,0) (0,2,
The tangent vectors X; and X; are drawn in the diagram from parts (a) and (b).

(8) (Gradients ‘n’ plot) Consider the function

p:R* =R, ply =x—y.

(a) Sketch the following sets on a Cartesian plane:

(i) {(x,y) € R* | p(x,y) =0}
(ii) {(x,y) e R*| p(x,y) = 2}.
(iii) {(x,y) € R* [ p(x,y) = —2}.

(b) Compute the gradient Vp(x,y) for all (x,y) € R?.
(c) Plot the following values onto your sketch from part (a):

(i) Vp(0,0).
(ii) Vp(—1,—-1).
(il) Vp(=1,1).

(a) The three sets are sketched below in (i) red, (ii) orange, and (iii) pink:
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(b) The partial derivatives of p are
aplyy) =1, d%plyy) =2y
Thus, the gradient of p is

Vp(x,y) = (am(x,y), aZp(X)U))(X,y) - (1,—29)(X,y).

(c) Substituting the appropriate values for x and y, we obtain that
() Vp(0,0) = (1,0)00)
(i) Vp(=1,=1) = (1,2)11).

(i) Vp(—1,1) = (1,—2) 11,

The corresponding arrows are drawn in the plot from (a) in (i) blue, (ii) purple, (iii) green.
(9) (Connections to “Convergence and Continuity”) Consider the following subsets of R?:
V={(x,y) € R*| x>0}, L={(x,y) € R*|x =0}

(a) Give an informal justification of the following: (i) V is open; (ii) L is not open.

11



(b) (Not examinable) Give a rigorous proof of the two statements in part (a).

(c) Is the following subset of R? connected:

Q={(x,y) e R* |y #0)?

Give a brief (informal) justification of your answer.

(a) Informal justifications for both statements are given below:

(i) Consider a point (x,y) € V, so that x > 0. Suppose you take a step away from (x,y),
in any direction, to another point (x’,y’). Then, as long as that step is small enough,

we would still have x’ > 0, and hence (x’;y’) € V. Thus, by definition, V is open.

(ii) Consider the point (0,0) € L. Suppose you take a step away from (0,0) in the x-
direction. Then, no matter how small of a step you take, you will always no longer be

on L. Thus, L violates the definition of openness and hence is not open.

(b) Formal proofs of both statements are given below:

(i) To prove that V is open, we must establish the following statement:

(x) For any (x,y) € V, there exists 8 > 0 such that for any (x',y’) € R? satisfying
l(x'sy’) — (x,y)| < &, we have (x',y’) € V.

Let (x,y) be an arbitrary element of V; note that x > 0. Moreover, let us choose

& =x > 0. Then, given any (x’,y’) € R? such that |(x/,y’) — (x,y)| < x, we have that
x> |(x,y) = (% y)l > X' —x],

and it follows that x” > 0. As a result, (x’,y’) € V, and hence (%) is proved.
(ii) Negating the definition of open subsets, we see that we must prove the following:

(%) There exists some (x,y) € L such that for every & > 0, there exists (x',y’) € R?
such that [(x',y’) — (x,y)| < 8, but (x',y’) € L.

Let us choose (x,y) = (0,0) € L. Given an arbitrary & > 0, we choose the point

(x,y') = (%,0). In particular, we have that (%,O) ¢ L, and that

'y y') — (e y)l = ‘(%o) B (0,0)’ b

12



In particular, the above proves the statement (x).

(c) The set Q is not connected.
To justify this, we consider two points (x1,Y1), (x2,Y2) € Q, with y; < 0 < y,. Then,
any path that connects (x1,y7) to (x2,y2) must pass through the (horizontal) line y = 0

(this comes from the intermediate value theorem), and hence this path must leave Q.

(10) (Good derivative, bad derivative)

(a) (Not examinable) Give an example of a function b : R? — R such that (i) 9:b(x,y)
exists for all (x,y) € R%, but (ii) 9,b(x,y) fails to exist for some (x,y).

(b) (Fun! But not examinable) Give an example of a function b : R> — R such that (i)
01b(x,y) exists for all (x,y) € R?, but (ii) 9,b(x,y) fails to exist for any (x,y).

(a) One example of such a function b is the following:

1 ify=0,
0 ify#0.

b:R* >R, bxy) =

Note that b is always constant if we hold y constant and vary only with respect to x. As
a result, 01b(x,y) = 0 for all (x,y) € R?.

On the other hand, if we fix x = 0, for instance, and we vary in y, we see that

1 ify=0,
0 ify#0.

b(O,y) -

In particular, this fails to be continuous at y = 0, hence we cannot differentiate with respect
to y there. As a result, 0,b(0,0) fails to exist.

(b) One example of such a function b is the following:

1 ifyeqQ,
0 ify¢Q.

b:R* =R,  bxy) =

(Here, Q is the set of rational numbers.)
Again, b is always constant if we hold y constant and vary only with respect to x. As a

result, 91b(x,y) = 0 for all (x,y) € R% On the other hand, if we fix any x-value and vary
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in y, then the resulting function y +— b(x,y) fails to be continuous at any value of y. As a

result, 0,b(x,y) cannot exist at any (x,y) € R2.
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