MTH5113 (2023/24): Problem Sheet 4

All coursework should be submitted individually.

- Problems marked "[Marked]" should be submitted and will be marked.

Please submit the completed problem on QMPlus:

- At the portal for Coursework Submission 1.
(1) (Warm-up)
(a) Consider the following regular parametric curve:

$$
\mathbf{h}: \mathbb{R} \rightarrow \mathbb{R}^{3}, \quad \mathbf{h}(\mathrm{t})=(\mathrm{t}, \cos \mathrm{t}, \sin \mathrm{t}) .
$$

(i) Find the tangent line to \mathbf{h} at $\mathrm{t}=\frac{3 \pi}{4}$.
(ii) Sketch \mathbf{h}, the tangent vector $\mathbf{h}^{\prime}\left(\frac{3 \pi}{4}\right)_{\mathbf{h}\left(\frac{3 \pi}{4}\right)}$, and the tangent line from (i).
(b) Consider the following regular parametric curve:

$$
\mathbf{k}:(0, \infty) \rightarrow \mathbb{R}^{2}, \quad \mathbf{k}(\mathrm{t})=(\mathrm{t} \cos \mathrm{t}, \mathrm{t} \sin \mathrm{t})
$$

(i) Find the tangent line to \mathbf{k} at $\mathrm{t}=\pi$.
(ii) Sketch \mathbf{k}, the tangent vector $\mathbf{k}^{\prime}(\pi)_{\mathbf{k}(\pi)}$, and the tangent line from (i).
(2) (Warm-up) Let \mathcal{C} denote the unit circle about the origin:

$$
\mathcal{C}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}
$$

Compute, at each of the points $\mathbf{p} \in \mathcal{C}$ listed below, the tangent line to \mathcal{C} :
(a) $\mathrm{p}=(1,0)$.
(b) $\mathrm{p}=(0,1)$.
(c) $\mathrm{p}=\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$.
(3) (Am I a curve?) For each of the sets C provided below: (i) give a sketch of C, (ii) determine whether C is a curve or not, and (iii) justify your answer.
(a) $C=\left\{(x, y) \in \mathbb{R}^{2} \mid x-2 y=7\right\}$.
(b) $C=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}-y^{2}=0\right\}$.
(c) $C=\left\{(x, y) \in \mathbb{R}^{2} \mid x=y^{2}\right\}$.
(4) [Marked] Consider the set

$$
C=\left\{(x, y) \in \mathbb{R}^{2} \mid y^{2}=x^{6}\left(1-x^{2}\right)\right\}
$$

(a) Is C a curve? If yes, why yes? If no, why not?
(b) Find a parametrisation of C and sketch C. Be sure to specify the domain of your parametrisation.

Hint: a nice set of identities to consider are $\cos ^{2}\left(\frac{t}{2}\right)=\frac{1+\cos t}{2}, \sin ^{2}\left(\frac{t}{2}\right)=\frac{1-\cos t}{2}$, and $\sin t=2 \sin \left(\frac{t}{2}\right) \cos \left(\frac{t}{2}\right)$.
(c) Find the tangent line to C at $\left(\frac{\sqrt{2}}{2}, \frac{1}{4}\right)$.
(5) [Tutorial] Consider the ellipse given by

$$
E=\left\{(x, y) \in \mathbb{R}^{2} \mid 3 x^{2}+2 y^{2}=6\right\}
$$

(a) Show that E is a curve.
(b) Find a parametrisation of E that passes through the point $(-\sqrt{2}, 0) \in E$.
(c) Find the tangent line to E at $(-\sqrt{2}, 0)$.
(6) [Tutorial] Mr Error recently attempted an Introduction to Differential Geometry problem sheet and did quite poorly. He definitely needs some help! Here, you can assume the role of a TA for MTH5113 and help Mr Error see the error of his ways.
(a) Consider the following parabola in \mathbb{R}^{2} :

$$
P=\left\{(x, y) \in \mathbb{R}^{2} \mid y=x^{2}\right\} .
$$

The following are two different (correct) parametrisations of P :

$$
\begin{array}{ll}
\gamma: \mathbb{R} \rightarrow \mathrm{P}, & \gamma(\mathrm{t})=\left(\mathrm{t}, \mathrm{t}^{2}\right), \\
\lambda: \mathbb{R} \rightarrow \mathrm{P}, & \lambda(\mathrm{u})=\left(\mathrm{u}+1,(\mathrm{u}+1)^{2}\right) .
\end{array}
$$

Mr Error computed the tangent line to γ at $\mathrm{t}=0$ and obtained

$$
\mathrm{T}_{\gamma}(0)=\left\{s \cdot(1,0)_{(0,0)} \mid s \in \mathbb{R}\right\} .
$$

He then computed the tangent line to λ at $\boldsymbol{u}=0$ and obtained

$$
\mathrm{T}_{\lambda}(0)=\left\{s \cdot(1,2)_{(1,1)} \mid s \in \mathbb{R}\right\} .
$$

Mr Error noticed that $T_{\gamma}(0)$ and $T_{\lambda}(0)$ were not the same, and concluded that tangent lines are not independent of parametrisation! Where did Mr Error err?
(b) Next, Mr Error considered the set

$$
C=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{4}=0\right\}
$$

He noticed that C is a level set of the function $f(x, y)=x^{2}+y^{4}$ and hence deduced that C is curve. Moreover, he observed that C consists of only a single point,

$$
C=\{(0,0)\}
$$

hence he concludes that a single point at the origin must be a curve (as we defined it in this module)! How did Mr Error go so far astray?
(7) (Parametrise me!) Consider the following curves:

$$
\begin{aligned}
& C_{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x=y^{4}\right\} \\
& C_{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1, x=0\right\} \\
& C_{3}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=1, x+y-z=2\right\} .
\end{aligned}
$$

(You can assume you already know each of the above is a curve.)
(a) Give one parametrisation of C_{1} whose image is all of C_{1}.
(b) Give one parametrisation of C_{2} whose image is all of C_{2}.
(c) Give one parametrisation of C_{3} whose image is all of C_{3}.
(8) (Bad function? No problem!) Find a smooth function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
C=\left\{(x, y) \in \mathbb{R}^{2} \mid f(x, y)=0\right\}
$$

satisfies the following: (i) $\nabla f(x, y)$ vanishes for every $(x, y) \in C$, but (ii) C is a curve.
(9) (Level set theorem, in 3-d!) Recall that one can often show that subsets of \mathbb{R}^{2} are curves by showing that they are "good" level sets of functions. In fact, there is a corresponding result for subsets of \mathbb{R}^{3}, though the statement is a bit more complicated:

Theorem. Let $\mathrm{U} \subseteq \mathbb{R}^{3}$ be open and connected, and let $\mathrm{f}: \mathrm{U} \rightarrow \mathbb{R}$ and $\mathrm{g}: \mathrm{U} \rightarrow \mathbb{R}$ both be smooth functions. Also, let $\mathbf{c}_{f}, \mathbf{c}_{\boldsymbol{g}} \in \mathbb{R}$, and let C be the level set

$$
C=\left\{(x, y, z) \in U \mid f(x, y, z)=c_{f}, g(x, y, z)=c_{g}\right\} .
$$

If $\nabla \mathbf{f}(\mathbf{p}) \times \nabla \mathrm{g}(\mathbf{p})$ is nonzero for every $\mathbf{p} \in \mathrm{C}$, then C is a curve.
Using this theorem, show that the following subsets of \mathbb{R}^{3} are curves:
(a) $C_{1}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=x^{2}+y^{2}, y=x\right\}$.
(b) $\mathrm{C}_{2}=\{(\cos \mathrm{t}, \sin \mathrm{t}, \mathrm{t}) \mid \mathrm{t} \in \mathbb{R}\}$.

