\$5 Inverse function Theorem
\$5 Inverse functions
Det 5.1. Inverse functions
Det 5.1.1 Lot
$$f: U \rightarrow \mathbb{R}$$
 and let $V = f(U)$ be the image,
then f is invertible if $\exists g: V \rightarrow U(\subseteq \mathbb{R})$ such that
 $g \circ f(x) \stackrel{\text{DEF}}{=} g(f(x)) = x$, $\forall x \in U$ and $f \circ g(y) = y$, $\forall y \in V$.
 g is called the inverse function of f and denoted by
 $f^{-1}: I.e. f^{-1}(y) = x$ if $t = f(x) = y$.
Theorem 5.1.2. (Properties g the inverse)
(i) The inverse is unique. Hence we will write $g = f^{-1}$
(ii) If f is invertible, then $f^{-1}(=g)$ is invertible.
 $I.e. (f^{-1})^{-1}(x) = f(x)$

Therem 5.1.3 A function is invortible if and only it	2
f'is injective.	
Ploof Let f:U>V be investible, e an inverse function	»n
exists. Suppose $f(x_1) = f(x_2)$, then $x_1 = f^{-1}(f(x_1)) = f^{-1}(f(x_2)) = x_2$ $\Rightarrow f$ is injective.	<u>}</u>
Let f be injective and $V = f(U) \Rightarrow$ that if $y \in V = f(U)$, then \exists unique $x \in U$, such t	hat
f(x) = y. Define $f'(y) = x$, this is well-defined.	
If $g(y) = \infty$, and $g(y) = \infty_2$, then $f(\alpha_1) = f(\alpha_2) = y$	
$\Rightarrow x_1 = \infty_2$ (by injectivity).	B

Examples
f:
$$\mathbb{R} \rightarrow \mathbb{R}$$
; $f(\mathbb{R}) = \mathbb{R}^{+} \cup \{0\}$
f does not have an inverse
g: $g(\mathbb{R}) \rightarrow \mathbb{R}$
because f is non-injective
 G_{g} . $f(-3) = f(3) = 9$ so,
 $def^{*}g f^{-1}(9)$ would be
an be anstructed
g: $\mathbb{R}^{+} \cup \{0\} \rightarrow \mathbb{R}^{+} \cup \{0\}$
uhave $g(y) = +Jy$
 $(g \circ f)(x) = g(f(x)) = ...$
 $= g(x) = +Jx^{2} = x$, for $x > 0$.
Mso f: $\mathbb{R} \cup \{0\} \rightarrow \mathbb{R} \cup \{0\}$
 $= g(x) = +Jx^{2} = x$, for $x > 0$.
 $Mso f: \mathbb{R} \cup \{0\} \rightarrow \mathbb{R} \cup \{0\}$
 $= g(x) = -Jy$

2 ×

Trivial observation consider f(x) = mx + C, let y = f(x), then $\Rightarrow x = y - c$, for $m \neq 0$ (note m = f(x)) y = mx + cSo inverse exists for $m \neq 0$, and if $g(y) = \underline{y} - c$ $g'(y) = \frac{1}{m} = \frac{1}{f'(x)}$ We prove a reput like this for functions f with Non-zero devivative.

· ·

"IF
$$f$$
 and f ARE DIFFERENTIABLE" $g'(f(x), f'(x))$
"In moders",
 $g'(f(x), f'(x)) = (g \circ f)'(x)$,
 $g'(y) \circ f'(x) = (f'(x)) = (f(x)) = f'(x) = (f(x)) =$

If
$$x_0 \in I$$
, then
 $(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}$, $f'(x_0) \neq 0$
We assumed f^{-1} is differentiable here, can we
prove it?

Theorem 5.2,1 (Inverse function Theorem)
Let f be an injective continuous function on an
open interval I and let
$$J = f(I)$$
. If
f is differentiable at $x_0 \in I$, and $f'(x_0) \neq 0$,
then f^{-1} is differentiable at $y_0 = f(x_0)$ and
 $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$.

Proof Note I is an open interval and we have

$$\lim_{x \to \infty} \frac{f(x) - f(x_0)}{x - x_0} = \frac{f'(x_0) \neq 0}{x - x_0}$$

$$\lim_{x \to \infty} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)} \neq 0$$

Example 5.2.2
$$[X+i] = X+i \quad x+i > 0$$

$$= -(x+i) \quad x+i = 0$$

$$= -(x+i) \quad x+i = 0 \quad x = 0$$
(i) Let $f(x) = +x^{\frac{1}{2}}$, $x \in (0,\infty)$.
Then f is injective (why?), usitinuous and differentiable $\forall x \in (0,\infty)$. Check!
 $f'(x) = \frac{1}{2x^{\frac{1}{2}}}(\pm 0, \text{ for } x > 0)$.
Also $f'(x) > 0$, and so $f(x)$ is strictly increasing on $(0,\infty)$.
By The $I \vee T$, for $y_0 = f(\infty_0)$, $y_0 = x_0^{\frac{1}{2}}$, $g'(y) = 2y$.
 $(f^{-1})'(y) = \frac{1}{1/2x_0^{\frac{1}{2}}} = 2x_0^{\frac{1}{2}} = 2y_0$
Note: $f^{-1}(y_0) = y_0^2$ and $(f^{-1})'(y_0) = 2y_0$, $x_0 = y_0^2$.

$$\frac{(g \circ f)'(x)}{g = f^{-1}} = g'(f(x))f'(x)$$

$$g = f^{-1}(g \circ f)(x) = x$$
Let $y = f(x)$, $x = g(y)$, $g = f^{-1}$.
$$\frac{g'(y) \cdot f'(x) = 1}{f'(x)}$$

(ii) Let
$$f(x) = e^{x} (\geq 0)$$
.
 $f'(x) = e^{x} > 0 \Rightarrow$
 $f'(x) = e^{x} > 0 \Rightarrow$
 $f'(x) = e^{x} = \frac{1}{y}$.
By IVT $(f'')'(y) = \frac{1}{f'(x)} = \frac{1}{e^{x}} = \frac{1}{y}$.
Note $f'(y) = \ln(y)$, $(f'')'(y) = \frac{1}{y}$, as expected!
(iii) Consider $f(x) = \frac{1}{1-x}$, $f: \mathbb{R} \setminus \{1\}^{2} \to \mathbb{R}$.
 $y = f(x)$
(iii) Consider $f(x) = \frac{1}{1-x}$, $f: \mathbb{R} \setminus \{1\}^{2} \to \mathbb{R}$.
 $y = g(y)$
Use Inv . For Thm:
 $(f^{-1})'(y) = \frac{1}{f'(x)} = \frac{1}{f'(x)} = \frac{1}{f(-x)^{2}} = \frac{(1-x)^{2}}{y^{2}}$
 $\therefore (f^{-1})'(y) = \frac{1}{y^{2}}$ $(CHK: y = \frac{1}{1-x}, \Rightarrow \alpha = 1-\frac{1}{y})$

(iv) f(x) = sin(x), $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$ $(f')(y) = \frac{1}{\sqrt{1-y^2}}$ (C+1k: ? By IVT: Note f (y)=arcsin(y); $\infty = g(y)$ f(x) = Sin(x) $g = f^{-1} = \operatorname{arcsin}(=(\sin^{-1})(y))$ f'(x) = cos(x) > 0strictly. increasing fm, f = sinEND OF WEEK 4

$$\int \frac{1}{2} \int \frac{$$

Exercises Investigate differentiability of

$$f: \mathbb{R} \rightarrow \mathbb{R} \quad x \longmapsto (x+1)|x|$$

$$g: \mathbb{R} \rightarrow \mathbb{R} \quad x \longmapsto (x-1)|x-1|$$
Note: $|x| = \begin{cases} x \mid x \Rightarrow 0 \\ -x \mid -x \leqslant 0 \end{cases}$

$$\therefore \quad f(x) = \begin{cases} (x+1) \ x \ x \ x > 0 \\ -(x+1) \ x \ x \ x < 0 \end{cases}$$
Note $f(x) \rightarrow 1 \quad x \Rightarrow 0^{+}$

$$f'(x) = \begin{cases} 2x+1 \ -x \leqslant 0 \end{cases}$$
Note $f(x) \rightarrow 1 \quad x \Rightarrow 0^{+}$

$$f'(x) = \begin{cases} 2x+1 \ x > 0 \end{cases}$$
Note $f(x) \rightarrow 1 \quad x \Rightarrow 0^{+}$

$$f'(x) = \begin{cases} 2x+1 \ x < 0 \qquad (1/x) \rightarrow -1 \quad x \Rightarrow 0^{+} \end{cases}$$

$$g(x) = \frac{(x-1)(x-1)}{-(x-1)(x-1)}, \quad x > 1 \Rightarrow q'(x) = \begin{cases} 2x-2 \ x > 1 \\ -2x+2 \ x < 1 \end{cases}$$

$$g'(1) = 0, \quad g'(1) = 0 \qquad g'(0) = 0$$

 $x^2 + x x x > 0$ $-x^2 - x \approx \sqrt[3]{/}$

 $g(x) = (x+1)|x+1| = {(x+1)^2 + x+1 > 1 - (x+1)^2 + x+1 < 0}$ x+1>0, x>-1 x < -1 $y' = (x+1)^2$ f'(-1) = 0+'(-1+)=0 f'(-1) = 0

Note some function can be differentiable but the
deinstative need not be differentiable
$$T_1$$
,
Consider $f(x) = \{ \frac{3}{2}c^2sin(\frac{1}{2}x), \frac{1}{2} \neq 0 \}$
 $f'(0) = 0$ (see earlier)
 $f'(x) = 2n sin(\frac{1}{2}) + x^2 co(\frac{1}{2})(\frac{1}{2})$
 $= 2x sin(\frac{1}{2}) + co(\frac{1}{2})$

The term $\cos(\frac{1}{x})$ oscillates infinitely often between $1 \ge -1$ as $x \ge 0$ intereas $[2 \times \sin(\frac{1}{x})]$ is bounded by $2|x| \le 1 \le 2|x| \le x \le -\frac{1}{2}$ f'(x) oscillates infinitely between $>\frac{1}{2}$ and $<-\frac{1}{2}$ as $x \ge 0$ $\therefore f'$ introvens.

COURSEWORK

4.1

1) Let the function $f: (0, \pi) \to \mathbb{R}$ be given by $x \mapsto \cos(x)$. Show that f is invertible and that the inverse $g(y) = f^{-1}(y)$ is differentiable. Find the derivative g'.

Compute the Taylor polynomial $T_{1,0}(y)$ about zero of degree one for g. What is the remainder term in the Lagrange form?

Hence show that for $|y| \leq 1/2$ $|g(y) - \pi/2 + y| \leq \sqrt{3}/18 \approx 0.096 \; .$

$$f: \mathbb{R} \rightarrow \mathbb{R}$$
 $f(x) = \omega(x), f'(x) = -\sin(x), x \in (0, \pi)$

$$\sin ta > 0$$
 for $\pi \in (0, \pi)$: fis strictly decreasing 8 but mould so f to invertible on its co-domain sinx

$$f([0,\pi]) = (-1,1)$$

$$\ddot{u} \qquad \ddot{v}$$

$$g = f^{-1} \text{ exists as } g: (-1,1) \rightarrow (0,\pi).$$

$$g \circ f(x) = x$$
, $\forall x \in (0, \pi)$

+ 또

$$g'(f(x) (f'(x)) = 1 = g'(y) \cdot f'(x)$$
Let $g \in (-1, 1), q'(y) \cdot f'(x) = 1 \Rightarrow g'(y) = \frac{1}{f'(x)}$
i.e. $g'(y) = \frac{1}{(-\sin x)} = -\frac{1}{\sqrt{1-\cos^2(x)}} = -\frac{1}{\sqrt{1-y^2}}$

$$T_{(1,0)}f(x) = 1 + -\frac{\sin(0)}{1}x = \frac{1}{2} + 0.x = 1$$

$$R_{(1,0)}f(x) = \frac{2x^2}{2!} + \frac{f^{(2)}(c)}{2!}(c) = \frac{x^2}{2!}(-\sin(c)), c \in (0, x)$$

$$g(y) = T_{(1,0)}g(y) = g(0) + \frac{y}{1!}g'(0) = \frac{\pi}{2} + q_{(-1)} + R_{(-1)} + R_{(-1)} = -1$$

$$[y] < \frac{1}{2}, R_{(1,0)}g(y) = \frac{y}{2!} \cdot g''(c), 0 < c < x$$

$$q'(c) = -\frac{1}{\sqrt{1-y^2}}, g''(c) = (-1)(\frac{1}{2})(1-y^2)^{-\frac{2}{2}}(-2y) |_{g}, 0 < c < y$$

$$1.e. \quad g_{1}^{m}(c) = \left(\frac{1}{2}\right) \left(\frac{1}{1-y^{2}}\right)^{3} \left(\frac{-2y}{9}\right)\Big|_{c} = \frac{1}{2} \left[\frac{R_{(\Lambda,\theta)}}{2} \left(\frac{y}{9}\right)\Big|_{c} = \frac{1}{2} \left(\frac{1}{1-c^{2}}\right)^{3} \left(\frac{1}{2}\right)^{2} \left(\frac{1}{1-c^{2}}\right)^{3} \left(\frac{1}{2}\right)^{2} \left(\frac{1}{1-c^{2}}\right)^{2} \left(\frac{1}{2}\right)^{2} \left(\frac{1}{1-c^{2}}\right)^{2} \left(\frac{1}{2}\right)^{2} \left(\frac{1}{1-c^{2}}\right)^{3} \left(\frac{1}{2}\right)^{2} \left(\frac{1}{1-c^{2}}\right)^{3} \left(\frac{1}{2}\right)^{3} \left(\frac{1}{1-c^{2}}\right)^{3} \left(\frac{1}{2}\right)^{3} \left(\frac{1}{2}\right)^{3$$

$$-|g(y) - \frac{\pi}{2} + y| = |R_{(1,p)}g(y)| < \frac{1}{653} = \frac{13}{18}$$

COURSEWORK 4.2

2) Let $f: (-1, \infty) \to \mathbb{R}, x \mapsto \sin(\pi \sqrt{1+x})$. Show that

$$4(1+x)f''(x) + 2f'(x) + \pi^2 f(x) = 0.$$

Show that for all $n \in \mathbb{N}$

$$4f^{(n+2)}(0) + 2(2n+1)f^{(n+1)}(0) + \pi^2 f^{(n)}(0) = 0.$$

Hence find the Taylor polynomial $T_{4,0}(x)$ for $\sin(\pi\sqrt{1+x})$. *Hint: If you wish you may use Leibniz's formula for the derivative of a product of n-times differentiable functions g and h,* $(gh)^{(n)} = \sum_{k=0}^{n} {n \choose k} g^{(n-k)} h^{(k)}$.

$$f(x) = \sin(\pi\sqrt{1+x})$$

$$f^{(l)}(x) = \cos(\pi\sqrt{1+x}) \cdot \frac{\pi}{2} \cdot \frac{1}{\sqrt{1+x}}$$

$$f^{(2)}(x) = -\frac{\pi^{2}}{4} \sin(\pi\sqrt{1+x}) \frac{1}{\sqrt{1+x}} + \cos(\pi\sqrt{1+x}) \left(-\frac{\pi}{4} (1+x)^{-3/2}\right)$$

$$\int_{1}^{1} \frac{1}{\sqrt{1+x}} + \cos(\pi\sqrt{1+x}) \left(-\frac{\pi}{4} (1+x)^{-3/2}\right)$$

$$\begin{array}{l} 4(1+x) f^{(2)}(x) = -\pi^{2} \sin(\pi \sqrt{1+x}) + \cos(\pi \sqrt{1+x}) f^{\pi} \frac{1}{\sqrt{1+x}} \\ & -\pi^{-2} f^{(0)}(x) \\ 4(1+x) f^{(2)}(x) + \frac{2}{2} f^{(1)}(x) + \pi^{2} f^{(x)} & n=0 \quad \text{as legal} \\ \\ 2iff \\ 4(1+x) f^{(3)}(x) + \frac{4}{4} f^{(2)}(x) + 2f^{(3)}(x) + \pi^{2} f^{(4)}(x) = 0 \quad n=1 \\ \\ 4(1+x) f^{(4)} + \frac{4}{4} f^{(3)}(x) + \frac{4}{4} f^{(3)}(x) + 2f^{(3)}(x) + \pi^{2} f^{(2)}(x) = 0 \quad n=2. \\ \\ \\ \hline \text{or ganoal } n: \\ \\ \\ 4(1+x) f^{(n+2)}(x) + 2(2n+1) f^{(n+1)}(x) + \pi^{2} f^{(n)}(x) = 0 \quad n=2. \\ \\ \hline \text{Evaluate } f(0) \geq f^{(n)}(0), \text{ then use tecursion} \\ \\ \\ \\ \\ 4f^{(n+2)}(0) + 2(2n+1) f^{(n+1)}(0) + \pi^{2} f^{(n)}(0) = 0. \end{array}$$

Exercises Investigate differentiability of

$$f: \mathbb{R} \rightarrow \mathbb{R} \quad x \mapsto (x+1)|x|$$

 $g: \mathbb{R} \rightarrow \mathbb{R} \quad x \mapsto (x-1)|x-1|$
Note: $|x| = \begin{cases} x \mid x \geq 0 \\ -x \mid -x \leq 0 \end{cases}$, $f(x) = \begin{cases} (x+1) \times x \times x > 0 \\ -(x+1) \times x \times x < 0 \end{cases}$

$$f'(x) = \begin{cases} 2x+1, & x>0 \\ -2x-1, & x<0 \end{cases}$$
Note $f'(x) \to -1$ as $x \to 0^+$
 $f'(x) \to -1$ as $x \to 0^-$
 $f'(x) \to -1$ as $x \to 0^-$

$$g(x) = (\alpha - 1)(x - 1), \quad x > 1 -(\alpha - 1)(x - 1), \quad x > 1 -(\alpha - 1)(x - 1), \quad x < 1 = 9 \quad g'(x) = \begin{cases} 2x - 2, & x > 1 \\ -2x + 2, & x < 1 \end{cases}$$

$$g'(1,) = 0, \quad g'(1^{+}) = 0 \quad \therefore \quad g'(0) = 0$$