§5 Inverse function Theorem
\$5.1 Inverse functions
Deft" 5.1.1 Let $f: u \rightarrow \mathbb{R}$ and let $v=f(u)$ be the image,
then f is invertible if $\exists g: v \rightarrow u(\subseteq \mathbb{R})$ such that $g \circ f(x) \stackrel{D E F}{=} g(f(x))=x, \forall x \in U$ and $f \circ g(y)=y, \forall y \in V$. g is called the inverse function of f and denoted by
Y/f $\quad f^{-1}$: le. $f^{-1}(y)=x$ if $f(x)=y$.
Theorem 5.1.2. (Properties $\left.\begin{array}{c}g \\ g\end{array}\right)=x$ the inverse)
(i) The inverse is unique. Hence we will wite $g=f^{-1}$
(ii) If f is invertible, then $f^{-1}(E g)$ is invertible.

$$
\text { 1.e. }\left(f^{-1}\right)^{-1}(x)=f(x)
$$

$$
y=f(x)
$$

Proof
(i) Let $V=f(U)$ and $g_{1}, g_{2}: V \rightarrow \mathbb{R}$ be inverses of function f, then $x=g_{1}(f(x))=g_{1}(y), x=g_{2}(f(x))=g_{2}(y)$
Therefore $g_{1}(y)=g_{2}(y) \quad \forall y \in V$, and so $g_{1}=g_{2} \quad(\forall x \in c l)$.
(ii) Note $g^{-1}=f: g^{-1}(x)=y$ given by $x=g(y)\left(f \circ f^{-1}(y)=f(x)=y\right)$
'M, 'rr'; $\operatorname{graph}(f)=\{(x, f(x)), x \in U\}=\{(x, y) \mid x \in U, y \in V\}$
-images,"

$$
\operatorname{graph}(g)=\{(y, g(y), y \in V\}=\{(y, x) \mid y \in V, x \in U\}
$$

Theorem 5.1.3 A function is invertible if and only if f is injective.
Proof Let $f: U \rightarrow V$ be invotible, ie an inverse function exists.
Suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$, then

$$
x_{1}=f^{-1}\left(f\left(x_{1}\right)\right)=f^{-1}\left(f\left(x_{2}\right)\right)=x_{2}
$$

$\Rightarrow f$ is injective.

Let f be injective and $V=f(u) \Rightarrow$
that if $y \in V=f(u)$, then \exists unique $x \in U$, such that $f(x)=y$. Define $f^{-1}(y)=x$, this is well-defined.
If $g(y)=x_{1}$ and $y(y)=x_{2}$, then $f\left(x_{1}\right)=f\left(x_{2}\right)=y$ $\Rightarrow x_{1}=x_{2}$ (by injectivity).

Examples

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} ; f(\mathbb{R})=\mathbb{R}^{+} u\{0\} \\
x & \mapsto x^{2}
\end{aligned}
$$

f does not have an inverse

$$
g: f(\mathbb{R}) \rightarrow \mathbb{R}
$$

because f is ron-injective cog. $f(-3)=f(3)=9$ so, def"g $f^{-1}(9)$ would be ambiguous.

However, partial inverses an be constructed $g: \mathbb{R}^{+} \cup\{0\} \rightarrow R^{+} u\{0\}$ where $g(y)=+\sqrt{y}$

$$
\begin{aligned}
& (g \circ f)(x)=g(f(x))= \\
& =g(x)=+x^{x^{2}}=x, \text { for } x>0 .
\end{aligned}
$$

Also $f: \mathbb{R}^{-} \cup\{0\} \rightarrow \mathbb{R}^{+} \cup\{0\}$
$x \longmapsto x^{2}=y$

$$
f^{-1}(y)=-\sqrt{y}
$$

Theorem 5:1.4. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and infective. Then f attains its minimum or maximum at a orb. Proof Assume $f(a)<f(b)$.
Suppose $\exists c, a<c<b$, such that $f(c)<f(a)<f(b)$ By The intermediate value theorem (IVT) Jd such that ' ' $f(d)=f(a)$, \& $d \neq a$ because

$$
a<c^{-}=-\delta^{\prime}<b
$$

$\therefore f$ is not intjective \otimes contradiction

$$
\therefore f(c) \notin f(a) .
$$

Similarly $f(c) \ngtr f(b)$.

f is continuous on $[a, b]$
and \therefore on $[c, b]$
Assume $\exists c \in(a, b)$ s.t.

$$
f(c)<f(a)<f(b)
$$

\therefore IVT gives a $d \in(c, b)$
such that $f(d)=f(a)$
and $a \neq d(a<c<d)$
$\therefore f$ is not injective
(contrary to assumption)
Note assume $f(c)>f(b)$ and show \exists e sot. $a<e<c<b$ with $f(e)=f(b)$ and $e \neq b$.

Trivial observation -
consider $f(x)=m x+c$, let $y=f(x)$, then
$y=m x+c \Rightarrow x=\frac{y-c}{m}$, for $m \neq 0$ (note $m=f^{\prime}(x)$)
So inverse exists for $m \neq 0$, and if $g(y)=\frac{y-c}{m}$

$$
g^{\prime}(y)=\frac{1}{m}=\frac{1}{f^{\prime}(x)}
$$

We prove a result like this for functions f with Non-zen derivative.
§5.2 Inverse function theorem
Note a linear function $y=m x+c$ can be "inverted" to give $x=(y-c) / m$, provided $m \neq 0$ and " $m=\frac{d y}{d x}$.
Let f be an injective function on an open interval. I. We can show that:
f is strictly increasing oo decreasing on I, Ω The image is an interval $J, I, J \subseteq \mathbb{R}$

$$
\begin{aligned}
& f^{-1} \circ f(x)=x \quad \forall x \in I \text {, and } \\
& f \circ f^{-1}(y)=y \quad \forall j \in J
\end{aligned}
$$

prod g.
Ni Differentiating with respect to x gives $g^{\prime}\left(f(x) \cdot f^{\prime}(x)\right.$, $\prime^{-1}(y) \cdot f^{\prime}(x) \doteq\left(f^{-1}\right)^{\prime}(f(x)) \cdot f^{\prime}(x)=d(x)=1 \quad \forall x \in \mathcal{I}=(g \circ f)^{\prime}(x)$, $\therefore(f)(f(x)) f^{\prime}(x)=\frac{d}{d x}(x)=1 \quad \forall x \in I$ "IF" f " and f ARE DIFFERENTIABLE" comp of frs

If $x_{0} \in I$, then

$$
\left(f^{-1}\right)^{\prime}\left(f\left(x_{0}\right)\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}, \quad f^{\prime}\left(x_{0}\right) \neq 0
$$

We assumed f^{-1} is differentiable here, can we prove it?

Theorem 5.2.1 (Inverse function Theorem)
Let f be an injective continuous function on an open interval I and let $J=f(I)$. If f is ditterentiable at $x_{0} \in I$, and $f^{\prime}\left(x_{0}\right) \neq 0$, then f^{-1} is differentiable at $y_{0}=f\left(x_{0}\right)$ and

$$
\left(f^{-1}\right)^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)} .
$$

Proof Note I is an open interval and we have

$$
\begin{aligned}
& \quad \lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}\left(x_{0}\right) \neq 0 \\
& \therefore \lim _{x \rightarrow x_{0}} \frac{x-x_{0}}{f(x)-f\left(x_{0}\right)}=\frac{1}{f^{\prime}\left(x_{0}\right)} \neq 0 .
\end{aligned}
$$

$$
\begin{aligned}
& x=f^{-1}(y), x_{0}=f^{-1}\left(y_{0}\right) \\
& \Rightarrow \lim _{x \rightarrow x_{0}} \frac{f^{-1}(y)-f^{-1}\left(y_{0}\right)}{y-y_{0}}=\frac{1}{f^{\prime}\left(x_{0}\right)}
\end{aligned}
$$

But f is differentiable and therefore continuous So as $x \rightarrow x_{0}, y \rightarrow y_{0}$

$$
=\lim _{y \rightarrow y_{0}} \frac{f^{-1}(y)-f^{-1}\left(y_{0}\right)}{y-y_{0}}=\left(f^{-1}\right)^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}=\frac{1}{f^{\prime}\left(g\left(y_{0}\right)\right)}
$$

$\therefore \quad y=f^{-1}$ is differentiable at $y=y_{0}, g^{\prime}\left(y_{0}\right)$ exists
Note $g \circ f(x)^{-}=g(y)=x \quad$ and $\quad f \circ g(y)=f(x)=y$

Corollary If $f: u \rightarrow \mathbb{R}$ is strictly increasing (decieasing, , then f is invertible.

Example 5.2.2.

$$
\begin{aligned}
|x+1| & =x+1 \quad x+1>0 \\
& =-(x+1) \quad x+1<0 f(x)=|x+1| \\
x & =0
\end{aligned}
$$

(i) Let $f(x)=+x^{1 / 2}, x \in(0, \infty)$

Then f is injective (why?), continuous and differentiable $\forall x \in(0, \infty)$. Check!

$$
f^{\prime}(x)=\frac{1}{2 x^{1 / 2}}(\neq 0, \text { for } x>0) .
$$

Also $f^{\prime}(x)>0$, and to $f(x)$ is strictly increasing on $(0, \infty)$.
By The IVT, for $y_{0}=f\left(x_{0}\right), y_{0}=x_{0}^{1 / 2}$

$$
\text { goy) }=x=y^{2}
$$

$$
g^{\prime}(y)=2 y
$$

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{1 / 2 x_{0}^{1 / 2}}=2 x_{0}^{1 / 2}=2 y_{0}
$$

Note: $f^{-1}\left(y_{0}\right)=y_{0}^{2}$ and $\left(f^{-1}\right)^{\prime}\left(y_{0}\right)=2 y_{0}$,

$$
y_{0}=x_{0}^{1 / 2}
$$

$$
\because x_{0}=y_{0}^{2}!
$$ as expected!

$$
\begin{aligned}
& (g \circ f)^{\prime}(x)=g^{\prime}(f(x)) f_{y}^{\prime}(x) \\
& g=f^{-1}(g \circ f)(x)=x
\end{aligned}
$$

Let $y=f(x), x=g(y), \quad g=f^{-1}$.

$$
\begin{aligned}
& g^{\prime}(y) \cdot f^{\prime}(x)=1 \\
& g^{\prime}(y)=\frac{1}{f^{\prime}(x)}
\end{aligned}
$$

(ii) Let $f(x)=e^{x}(\geq 0) . \therefore f^{\prime}(x)=e^{x}>0 \Rightarrow$ strictly f is differentiable, injective and increasing.
By IVT

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}(x)}=\frac{1}{e^{x}}=\frac{1}{y} .
$$

Note $f^{-1}(y)=\ln (y), \quad\left(f^{-1}\right)^{\prime}(y)=\frac{1}{y}$, as expected!
(iii) Consider $f(x)=\frac{1}{1-x}, f: \mathbb{R} \backslash\{1\} \rightarrow \mathbb{R}$.

$$
y=f(x)
$$

Use Inv. Fr. The:

$$
\begin{aligned}
& \quad\left(f^{-1}\right)^{\prime}(y)=1 / f^{\prime}(x)=1 /\left[-\frac{(-1)}{(1-x)^{2}}\right]=(1-x)^{2}=\frac{1}{y^{2}} \\
& \therefore \quad\left(f^{-1}\right)^{\prime}(y)=\frac{1}{y^{2}} \quad \therefore C+1 k: y=\frac{1}{1-x}, \Rightarrow x=1-\frac{1}{y}
\end{aligned}
$$

(iv) $f(x)=\sin (x), x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

By IVT:

$$
\left(f^{-7}\right)^{\prime}(y)=\frac{1}{\sqrt{1-y^{2}}}
$$

$$
f(x)=\sin (x)
$$

$$
x=g(y)
$$

$$
f^{\prime}(x)=\cos (x) \underset{\text { sunctly }}{>}
$$

$$
\begin{aligned}
& =g(y) \\
& g=f^{-1}=\arcsin \left(=\left(\sin ^{-1}\right)(y)\right.
\end{aligned}
$$

strictly.
increasming
if $f=\sin$

$$
\left(\sin ^{-1}\right) \cdot \sin (x)=x
$$

$$
\begin{aligned}
f^{\prime}\left(\frac{\pi}{2}\right)=0, f^{\prime \prime}\left(\frac{\pi}{2}\right) & =-1 \\
f^{\prime}(x) & =\cos x \\
f^{\prime \prime}(x) & =-\sin x . \\
f^{\prime \prime}\left(\frac{\pi}{2}\right) & =
\end{aligned}
$$

$$
\left(\sin ^{-1}\right)^{\prime}(\sin x) \cdot \sin ^{\prime}(x)=1
$$

Let $y=\sin x \quad /$

$$
\begin{aligned}
\arcsin ^{\prime}(y) \cdot \sin ^{\prime}(x) & =1 \\
\arcsin ^{\prime}(y)=\frac{1}{\cos x} & =\frac{1}{+\sqrt{1-\sin ^{2} x}} \quad y \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
\end{aligned}
$$

Exercises Investigate ditferentiability of

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R} \quad x \longmapsto(x+1)|x| \\
& g: \mathbb{R} \rightarrow \mathbb{R} \quad x \longmapsto(x-1)|x-1|
\end{aligned}
$$

Note: $\quad|x|=\left\{\begin{array}{cc}x & 1 \\ -x & 1 \\ -x \leqslant 0\end{array}\right.$

$$
\begin{aligned}
& \therefore f(x)=\left\{\begin{aligned}
(x+1) x, & x>0 \\
-(x+1) x, & x<0
\end{aligned}\right. \\
& f^{\prime}(x)=\left\{\begin{array}{lll}
2 x+1, & x>0 \\
-2 x-1, & x<0 & \text { Wote } \\
f^{\prime}(x) \longrightarrow 1 \text { as } x \rightarrow 0^{+} \\
f^{\prime}(x) \rightarrow-1 \text { as } x \rightarrow 0^{-}
\end{array}\right. \\
& \therefore f^{\prime}(0) \neq \\
& g(x)=(x-1)(x-1), \quad x>1 \Rightarrow g^{\prime}(x)= \begin{cases}2 x-2, & x>1 \\
& -(x-1)(x-1) \\
-2 x+2 & x<1\end{cases} \\
& g^{\prime}\left(1^{-}\right)=0, g^{\prime}\left(1^{+}\right)=0 \quad \therefore g^{\prime}(0)=0 .
\end{aligned}
$$

$$
g(x)=(x+1)|x+1|=\left\{\begin{array}{lll}
(x+1)^{2} * & x+1>0, & x>-1 \\
-x^{2}-x & x<0 \\
-(x+1)^{2} * & x+1<0 & x<-1
\end{array}\right.
$$

Note some function can be difterentiable but the deivative need not be ditferentiable, Consider $f(x)=\left\{\begin{array}{ll}x^{2} \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$ ․

$$
\begin{aligned}
& f^{\prime}(0)=0 \quad \text { (see earlier) } \\
& f^{\prime}(x)=2 x \sin \left(\frac{1}{x}\right)+x^{2} \cos \left(\frac{1}{x}\right)\left(\frac{-1}{x^{2}}\right) \\
& =2 x \sin \left(\frac{1}{x}\right)+\cos \left(\frac{1}{x}\right)
\end{aligned}
$$

The ter $m \cos \left(\frac{1}{x}\right)$ oscillates untintely often between $1<-1$ as $x \rightarrow 0$ whereas $\left|2 x \sin \left(\frac{1}{x}\right)\right|$ is bounded by $2|x|$ so for $2|x|$ say $<\frac{1}{2}$ $f^{\prime}(x)$ oscillates infridély between $>\frac{1}{2}$ and $<-\frac{1}{2}$ as $x \rightarrow 0$ $\therefore f^{\prime}$ wot continuous.

COURSEWORK
4. 1

1) Let the function $f:(0, \pi) \rightarrow \mathbb{R}$ be given by $x \mapsto \cos (x)$. Show that f is invertible and that the inverse $g(y)=f^{-1}(y)$ is differentiable. Find the derivative g^{\prime}.
Compute the Taylor polynomial $T_{1,0}(y)$ about zero of degree one for g. What is the remainder term in the Lagrange form?
Hence show that for $|y| \leq 1 / 2$

$$
|g(y)-\pi / 2+y|, \leq \sqrt{3} / 18 \approx 0.096
$$

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto \cos (x)
\end{aligned} \quad f(x)=\cos (x), \quad f^{\prime}(x)=-\sin (x), \quad x \in(0, \pi)
$$

$\sin (x)>0$ for $x \in(0, \pi) \therefore f$ is strictly decreasing $\&$ contmnous and so f is invertible on its co-domain

$$
\begin{gathered}
f(10, \pi) \\
u \\
u
\end{gathered}
$$

$g=f^{-1}$ exists as $g:(-1,1) \rightarrow(0, \pi)$.

$$
g \circ f(x)=x, \forall x \in(0, \pi)
$$

$$
g^{\prime}\left(f(x)\left(f f^{\prime}(x)\right)=1=g^{\prime}(y) \cdot f^{\prime}(x)\right.
$$

Let $y \in(-1,1), g^{\prime}(y) \cdot f^{\prime}(x)=1 \Rightarrow g^{\prime}(y)=1 / f^{\prime}(x)$

$$
\begin{aligned}
& \text {.e. } g^{\prime}(y)=1 /(-\sin x)=-\frac{1}{\sqrt{1-\cos ^{2}(x)}}=-\frac{1}{\sqrt{1-y^{2}}} \\
& T_{(1,0)} f(x)=1+\frac{-\sin (0)}{1} x=1+0, x=1 \\
& R(1,0) f(x)=\frac{x^{2}}{2!} f^{(2)}(c)=\frac{x^{2}}{2!}(-\sin (c)), c \in(0, x) \\
& g(y)=T_{(1,0)} g(y)=g(0)+\frac{y}{1!} g^{\prime}(0)=\left(\frac{\pi}{2}+y(-1),+R,\left.\frac{-1}{\sqrt{1-y^{2}}}\right|_{y=0}=-1\right\}
\end{aligned}
$$

$\left(|y|<\frac{1}{2}\right) R_{(0,0)} g(y)=\frac{y^{2}}{2!} g^{\prime \prime}(c), \dot{0}<c<x$

$$
g^{\prime}(c)=\frac{-1}{\sqrt{1-y^{2}}}, g^{\prime \prime}(c)=\left.(-1)\left(-\frac{1}{2}\right)\left(1-y^{2}\right)^{-\frac{3}{2}} \cdot(-2 y)\right|_{c} \quad 0<c<y
$$

i.e. $g^{\prime \prime}(c)=\left.\left(\frac{1}{2}\right) \frac{1}{\left(1-y^{2}\right)^{3 / 2}}(-2 y)\right|_{c}=$

$$
\begin{aligned}
\therefore|R(1,0) g(y)| & =\frac{y^{2}}{2} \frac{c}{\left(1-c^{2}\right)^{3 / 2}} \quad|y|<\frac{1}{2} \\
& <\frac{\left(\frac{1}{2}\right)^{2}}{2} \frac{\left(\frac{1}{2}\right)}{\left(1-\left(\frac{1}{2}\right)^{2}\right)^{3 / 2}} \quad \therefore|c|<\frac{1}{2} \&: \\
& =\frac{1}{16} \frac{1}{\left(\frac{3}{4}\right)^{3 / 2}}=\frac{1}{16} \frac{8}{3 \sqrt{3}}=\frac{1}{6 \sqrt{3}} \quad
\end{aligned} \quad \begin{array}{ll}
1-\frac{1}{4}<1-c^{2}
\end{array}
$$

$$
\therefore\left|g(y)-\frac{\pi}{2}+y\right|=|R(10) g(y)|<\frac{1}{6 \sqrt{3}}=\frac{\sqrt{3}}{18}
$$

COURSEWORK 4.2
2) Let $f:(-1, \infty) \rightarrow \mathbb{R}, x \mapsto \sin (\pi \sqrt{1+x})$. Show that

$$
4(1+x) f^{\prime \prime}(x)+2 f^{\prime}(x)+\pi^{2} f(x)=0
$$

Show that for all $n \in \mathbb{N}$

$$
4 f^{(n+2)}(0)+2(2 n+1) f^{(n+1)}(0)+\pi^{2} f^{(n)}(0)=0 .
$$

Hence find the Taylor polynomial $T_{4,0}(x)$ for $\sin (\pi \sqrt{1+x})$.
Hint: If you wish you may use Leibniz's formula for the derivative of a product of n-times differentiable functions g and $h,(g h)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} g^{(n-k)} h^{(k)}$.

$$
\begin{aligned}
& f(x)=\sin (\pi \sqrt{1+x}) \\
& f^{(1)}(x)=\cos (\pi \sqrt{1+x}) \cdot \frac{\pi}{2} \cdot \frac{1}{\sqrt{1+x}} \\
& f^{(2)}(x)=\frac{-\pi^{2}}{4} \sin (\pi \sqrt{1+x}) \frac{1}{(\sqrt{1+x})^{2}}+\cos (\pi \sqrt{1+x})\left(-\frac{\pi}{4}(1+x)^{-3 / 2}\right) \\
& 11 \frac{1}{(1+x)}
\end{aligned}
$$

$$
\begin{array}{cc}
4(1+x) f^{(2)}(x)=-\pi^{2} \sin (\pi \sqrt{1+x}) & +\cos (\pi \sqrt{1+x})\left(-\pi \frac{1}{\sqrt{1+x}}\right) \\
2^{\prime 2} & -\pi^{\prime \prime} f^{(0)}(x) \\
& -2 f^{\prime \prime}(x) \\
4(1+x) f^{(2)}(x)+2 \cdot f^{(1)}(x)+\pi^{2} f(x) \quad n=0 \quad \text { as req }
\end{array}
$$

Diff:

$$
\begin{aligned}
& \text { Diff: } \\
& 4(1+x) f^{(3)}(x)+\frac{4 f^{(2)}(x)+2 f^{(2)}(x)}{(1)}+\pi^{2} f^{(1)}(x)=0 \quad n=1 \\
& 4(1+x) f^{(4)}+4 f^{(3)}(x)+4 f^{(3)}(x)+2 f^{(3)}(x)+\pi^{2} f^{(2)}(x)=0 \quad n=2
\end{aligned}
$$

For general n :

$$
4(1+x) f^{(n+2)}(x)+2(2 n+1) f^{(n+1)}(x)+\pi^{2} f^{(n)}(x)=0
$$

Evaluate $f(0) \& f^{(1)}(0)$, then use recursion

$$
4 f^{(n+2)}(0)+2(2 n+1) f^{(n+1)}(0)+\pi^{2} f^{(n)}(0)=0 .
$$

Exercises Investigate differentiability of

$$
\begin{array}{ll}
f: \mathbb{R} \rightarrow \mathbb{R} & x \longmapsto(x+1)|x| \\
g: \mathbb{R} \rightarrow \mathbb{R} & x \longmapsto(x-1)|x-1|
\end{array}
$$

Note: $|x|=\left\{\begin{array}{ll}x & \mid x \geqslant 0 \\ -x & 1-x \leqslant 0\end{array} \quad \therefore \quad f(x)= \begin{cases}(x+1) x & , x>0 \\ -(x+1) x & , x<0\end{cases}\right.$

$$
\left.\left.\begin{array}{l}
f^{\prime}(x)=\left\{\begin{array}{cc}
2 x+1, & x>0 \\
-2 x-1, & x<0
\end{array} \quad \text { Note } \quad \begin{array}{l}
f^{\prime}(x) \rightarrow 1
\end{array} \quad \text { as } x \rightarrow 0^{+}\right. \\
\quad \therefore f^{\prime}(0) \neq f^{-}
\end{array}\right\} \begin{array}{l}
f^{\prime}(x) \rightarrow-1 \text { as } x \rightarrow 0^{-}
\end{array}\right] \begin{aligned}
& g(x)=(x-1)(x-1), \quad x>1 \\
& -(x-1)(x-1) \quad x<1 \\
& g^{\prime}\left(1^{-}\right)=0, g^{\prime}\left(1^{+}\right)=0 \quad \therefore g^{\prime}(0)=0 .
\end{aligned}
$$

