You are expected to **attempt all exercises** before the seminar and to **actively participate** in the seminar itself.

- 1. Consider a graph G, and let $e \in E(G)$.
 - (a) Show that $v_0e_1v_1e_2v_2...e_mv_mev_0$ is a shortest cycle containing e in G if and only if $v_0e_1v_1e_2v_2...e_m$ is a shortest v_0-v_m -path in the graph G' with V(G')=V(G) and $E(G')=E(G)\setminus\{e\}$.
 - (b) Give an algorithm for finding a shortest cycle in G that contains e.
 - (c) Give an efficient algorithm for finding a shortest cycle in G. Show that the algorithm is indeed efficient.
- 2. Find the strongly connected components of the following digraph.

3. Consider the following spreadsheet, in which some cells contain a formula that depends on the values of other cells.

	a	b	\mathbf{c}	d	e	f	g
1	e1+g5	a1-c5	110	a1+c1	180	f5-e1	c1+c2
2	a1+b1	a2+c4	240	a2+c2	120	f5-e2	e3+e5
3	e1+g5 a1+b1 a2+b2 a3+b3 a4+b4	a3-c3	100	a3+c1	200	f5-e3	f1+f2
4	a3+b3	a4+c2	220	a4+c2	100	f5-e4	f3+f4
5	a4+b4	a5-c1	130	a5+c5	120	g3+g4	g1+g2

- (a) Which of the values in columns c and e can be changed without changing the value of cell b2?
- (b) Is it possible to compute the values of all cells in the spreadsheet? Justify your answer.

To answer these questions, you may want to consider the digraph D where V(D) is the set of cells in the spreadsheet and E(D) contains an arc from cell u to cell v if cell u contains a formula that depends on the value of cell v.