

Problem Sheet 6

You are expected to **attempt all exercises** before the seminar and to **actively participate** in the seminar itself.

- 1. Consider a network (G, w), and let T be a minimum spanning tree of (G, w). Show that (G, w) has a unique minimum spanning tree if and only if the following condition is satisfied: for every edge $e \in E(G) \setminus E(T)$ with endpoints $u, v \in V(G)$ and every edge $d \in E(T)$ contained in the unique u-v-path in T, w(e) > w(d).
- 2. Consider the following network.

- (a) Use Prim's algorithm starting from vertex b to find a minimum spanning tree of the network.
- (b) Give another minimum spanning tree of the network.
- 3. Consider a directed network (D, w) such that $w(e) \geq 0$ for all $e \in A(D)$. Let $v \in V(D)$.
 - (a) Give an algorithm with running time $O(|V(D)| \cdot |A(D)|)$ that finds a shortest directed v-u-path in (D, w) for every $u \in V(D)$ for which such a path exists. Provide a brief justification for the claimed running time.
 - (b) Give an algorithm with running time $O(|V(D)| \cdot |A(D)|)$ that finds a shortest directed u-v-path in (D, w) for every $u \in V(D)$ for which such a path exists.
 - (c) Find shortest directed v_8-u -paths and shortest directed $u-v_1$ -paths in the following directed network for all $u \in \{v_1, v_2, \dots, v_8\}$.

