Mathematical Tools for Asset Management MTH6113

Dr Melania Nica

Practice Session 3

1. An investor has a utility of wealth function given by: $U(w)=w+k w^{2}$ where k is a constant and $w>0$ is the investor's wealth.
(i) Show under what circumstances this utility function would be appropriate for a risk-averse investor who prefers more wealth to less

Prefers more to less: $U^{\prime}(w)>0$
Risk averse: $U^{\prime \prime}(w)<0$
$U(w)=w+k w^{2}$
$U^{\prime}(w)=1+2 k w>0$
$U^{\prime \prime}(w)=2 k<0$
We need to restrict the wealth values if $k<0$:
$1+2 k w>0$ means $0<w<\frac{1}{-2 k}$

Show whether the function exhibits:
a. increasing, decreasing or constant absolute risk aversion

Solution
$A(w)=-\frac{U^{\prime \prime}(w)}{U^{\prime}(w)}=-\frac{2 k}{1+2 k w}$
$A^{\prime}(w)=\frac{2 k}{(1+2 k w)^{2}}(2 k)=\frac{4 k^{2}}{(1+2 k w)^{2}}$
$A^{\prime}(w)>0$ if $k \neq 0$ increasing ARA
$A^{\prime}(w)=0$ if $k=0$ constant ARA
b. increasing, decreasing or constant relative risk aversion

$$
\begin{aligned}
& R(w)=-w \frac{U^{\prime \prime}(w)}{U^{\prime}(w)}=-\frac{2 k w}{1+2 k w} \\
& R^{\prime}(w)=-\frac{2 k}{1+2 k w}+\frac{2 k w}{(1+2 k w)^{2}}(2 k)=\frac{-2 k-4 k^{2} w+4 k^{2} w}{(1+2 k w)^{2}}=\frac{-2 k}{(1+2 k w)^{2}} \\
& R^{\prime}(w)<0 \text { if } k>0 \text { declining RRA } \\
& R^{\prime}(w)=0 \text { if }-2 k=0 \text { or } k=0 \text { constant RRA } \\
& \boldsymbol{R}^{\prime}(\boldsymbol{w})>\mathbf{0} \text { if } \boldsymbol{k}<\mathbf{0} \text { increasing RRA }
\end{aligned}
$$

2. The loss to an individual from the occurrence of an adverse event is $£ 200$ and the probability that the event will occur is 0.2 . Insurance is available against the loss.
(i) The utility of any level of wealth for a particular individual is given by the function: $U=200+w+\frac{500}{w}$ where U is the utility and w is the wealth of the individual. The individual's initial level of wealth is $£ 250$.

Calculate, to the nearest penny, the maximum premium the individual is prepared to pay to cover this risk.

Maximum premium is c_{x} where $U\left(250-c_{x}\right)=E U[250+X]$ where X represents the potential loss; X belongs to $\{0,-200\}$ with respective probabilities $\{0.8,0.2\}$

$$
\begin{gathered}
200+\left(250-c_{x}\right)+\frac{500}{\left(250-c_{x}\right)}=0.8\left(200+(250+0)+\frac{500}{250+0}\right)+ \\
+0.2\left(200+(250-200)+\frac{500}{250-200}\right)
\end{gathered}
$$

Which simplifies to
$\left(450-c_{x}\right)\left(250-c_{x}\right)+500=413.6 \times\left(250-c_{x}\right)$
$c_{x}=38.77$ or 247.63 (take first value as the second premium is greater than max loss)

The utility of any level of capital (can be regarded as insurer's wealth) for a particular insurer is given by the function: $U=5,000+0.7 c$
where U is the utility and c is the capital of the insurer. The insurer's initial level of capital is $£_{1} 1,500$.

Calculate the minimum premium the insurer is prepared to charge for taking on this risk.

Answer

The choice faced by the insurer is whether to offer insurance for a premium (take gamble) or not offer insurance at all (not take gamble).

Minimum premium is Q which is received in all possible states (not random). The loss is the same as before and is random.

$$
\begin{aligned}
& E U[1500+Q+X]=U(1500) \\
& 0.2(5000+0.7(1500+Q-200))+0.8(5000+0.7(1500+Q))=5000+0.7 \times 1500 \\
& \Rightarrow 6050=6050+Q-40
\end{aligned}
$$

$$
\Rightarrow Q=40
$$

2. Consider the two risky assets A and B with cumulative probability distribution functions:

$$
\begin{aligned}
& F_{A}(x)=x \\
& F_{B}(x)=\sqrt{x}
\end{aligned}
$$

In both cases $0 \leq x \leq 1$.

1. Show that A is preferred to B on the basis of first-order stochastic dominance.

Check first that we have well defined cdfs:

$$
\begin{array}{ll}
F_{A}(0)=0, & F_{A}(1)=1 \\
F_{B}(0)=0, & F_{B}(1)=1
\end{array}
$$

A is preferred to B on the basis of first-order stochastic dominance if:

$$
\begin{gathered}
F_{A}(x) \leq F_{B}(x) \text { for all } 0 \leq x \leq 1 \text { and } \\
F_{A}(x)<F_{B}(x) \text { for some value of } x \text { in this range }
\end{gathered}
$$

i.e. if $x \leq x^{1 / 2} \Leftrightarrow x-x^{1 / 2} \leq 0 \Leftrightarrow x^{1 / 2}\left(x^{1 / 2}-1\right) \leq 0$

This clearly holds for all $0 \leq x \leq 1$ the equality being strict for $0<x<1$.
Hence A first-order dominates B.
2. Verify explicitly that A also dominates B on the basis of second-order stochastic dominance

A second-order dominates B if :

$$
\begin{gathered}
\int_{0}^{x} F_{A}(y) d y \leq \int_{0}^{x} F_{B}(y) d y \\
\text { for all } 0 \leq x \leq 1
\end{gathered}
$$

with the strict inequality holding for some value of x. This means:

$$
\begin{aligned}
& \frac{1}{2} x^{2}-\frac{2}{3} x^{3 / 2} \leq 0 \\
& \frac{2}{3} x^{\frac{3}{2}}\left(\frac{3}{4} x^{\frac{1}{2}}-1\right) \leq 0
\end{aligned}
$$

This clearly holds for all $0 \leq x \leq 1$ the equality being strict for $0<x<1$.
Hence A second-order dominates B.

