1. For the metric $d_{L^1}(f,g)$ defined by

$$d_{L^1}(f,g) = \int_a^b |f(x) - g(x)| dx,$$

where $f, g \in C[a, b]$, compute the distance $d_{L^1}(f, g)$ between $f(x) = e^x$ and g(x) = 2 where [a, b] = [0, 5].

We have $d_{L^1}(f,g) = \int_a^b |f(x) - g(x)| dx = \int_0^5 |e^x - 2| dx$. Since $e^x - 2$ changes its sign at $x = \ln 2$ (where $e^x = 2$), we obtain

$$d_{L^{1}}(f,g) = \int_{0}^{\ln 2} (2 - e^{x}) dx + \int_{\ln 2}^{5} (e^{x} - 2) dx$$

$$= (2x - e^{x})|_{0}^{\ln 2} + (e^{x} - 2x)|_{\ln 2}^{5}$$

$$= (2\ln 2 - 2) - (0 - 1) + (e^{5} - 10) - (2 - 2\ln 2)$$

$$= e^{5} + 4\ln 2 - 13.$$

2. Let $X = \mathbb{R}^m$. For any $x = (x_1, ..., x_m), y = (y_1, ..., y_m) \in X$, we set

$$d_{\infty}(x,y) := \max_{k} \{|x_k - y_k|\}.$$

Prove that d_{∞} defines a metric on X.

(M1) and (M2) are obvious and to check (M3) we note that for $x, y, z \in \mathbb{R}^m$ one has

$$\begin{split} d_{\infty}(x,y) &= \max_{1 \leq k \leq n} |x_k - y_k| = \max_{1 \leq k \leq n} |x_k - z_k + z_k - y_k| \\ &\leq \max_{1 \leq k \leq n} (|x_k - z_k| + |z_k - y_k|) \\ &\leq \max_{1 \leq k \leq n} |x_k - z_k| + \max_{1 \leq k \leq n} |z_k - y_k| \\ &= d_{\infty}(x,z) + d_{\infty}(z,y). \end{split}$$

3. Let (X,d) be a metric space. Define two new functions d_a and d_b on $X \times X$ by

$$d_a(x,y) := \min\{d(x,y), 1\}, \quad d_b(x,y) := \frac{d(x,y)}{1 + d(x,y)}, \quad \text{for} \quad x, y \in X.$$

Prove that d_a and d_b are also metrics on X.

Using (M3) for d, we find

$$d_{a}(x,y) = \min\{d(x,y), 1\}$$

$$\leq \min\{d(x,z) + d(z,y), 1\}$$

$$\leq \min\{d(x,z), 1\} + \min\{d(z,y), 1\}$$

$$= d_{a}(x,z) + d_{a}(z,y).$$

In the inequality of third line one considers the cases (a) $d(x, z) \le 1$ and $d(z, y) \le 1$ and (b) when one of these numbers is greater than 1.

Next we observe that the function $f(x) = \frac{x}{1+x} = 1 - \frac{1}{1+x}$ is monotonically increasing. We therefore find

$$d_b(x,y) = f(d(x,y)) \le f(d(x,z) + d(z,y))$$

$$= \frac{d(x,z)}{1 + d(x,z) + d(z,y)} + \frac{d(z,y)}{1 + d(x,z) + d(z,y)}$$

$$\le \frac{d(x,z)}{1 + d(x,z)} + \frac{d(z,y)}{1 + d(z,y)}$$

$$= d_b(x,z) + d_b(z,y).$$

4. We define "the Jungle metric" d_J on $X = \mathbb{R}^2$ by

$$d_J(x,y) := \begin{cases} |x_2 - y_2| & \text{if } x_1 = y_1, \\ |x_2| + |x_1 - y_1| + |y_2| & \text{otherwise.} \end{cases}$$

("climb down from the tree, walk to another one, climb up the tree"). Prove that d_I defines a metric on X.

Let $x = (x_1, x_2)$ and $y = (y_1, y_2)$. Clearly, if x = y then $d_J(x, y) = 0$. Conversely, if $d_J(x, y) = 0$ then $x_1 = y_1$ and $x_2 = y_2$, i.e. x = y. This proves (M1). The axiom (M2) is obvious.

To check (M3) consider $x, y, z \in \mathbb{R}^2$ and assume first that $x_1 \neq y_1, y_1 \neq z_1, x_1 \neq z_1$. Then

$$d_{J}(x,y) = |x_{2}| + |y_{2}| + |x_{1} - y_{1}|$$

$$\leq |x_{2}| + |y_{2}| + |x_{1} - z_{1}| + |z_{1} - y_{1}| + 2|z_{2}|$$

$$= d_{J}(x,z) + d_{J}(z,y).$$

If $x_1 = y_1 = z_1$ then

$$d_J(x,y) = |x_2 - y_2| \le |x_2 - z_2| + |z_2 - y_2| = d_J(x,y) + d_J(y,z).$$

In the case $x_1 = y_1$ and $z_1 \neq x_1$, we have

$$\begin{aligned} &d_J(x,y) = |x_2 - y_2| \le |x_2| + |y_2| \\ &\le |x_2| + |y_2| + |x_1 - z_1| + |y_1 - z_1| + 2|z_2| \\ &= d_J(x,z) + d_J(z,y). \end{aligned}$$

Finally in the remaining case $z_1 = x_1$ and $x_1 \neq y_1$ we have

$$\begin{aligned} &d(x,y) = |x_2| + |y_2| + |x_1 - y_1| \\ &\leq |x_2 - z_2| + |z_2| + |y_2| + |z_1 - y_1| \\ &= d_J(x,z) + d_J(z,y). \end{aligned}$$