1. For the metric $d_{L^{1}}(f, g)$ defined by

$$
d_{L^{1}}(f, g)=\int_{a}^{b}|f(x)-g(x)| d x
$$

where $f, g \in C[a, b]$, compute the distance $d_{L^{1}}(f, g)$ between $f(x)=e^{x}$ and $g(x)=2$ where $[a, b]=[0,5]$.

We have $d_{L^{1}}(f, g)=\int_{a}^{b}|f(x)-g(x)| d x=\int_{0}^{5}\left|e^{x}-2\right| d x$. Since $e^{x}-2$ changes its sign at $x=\ln 2$ (where $e^{x}=2$), we obtain

$$
\begin{aligned}
& d_{L^{1}}(f, g)=\int_{0}^{\ln 2}\left(2-e^{x}\right) d x+\int_{\ln 2}^{5}\left(e^{x}-2\right) d x \\
& =\left.\left(2 x-e^{x}\right)\right|_{0} ^{\ln 2}+\left.\left(e^{x}-2 x\right)\right|_{\ln 2} \\
& =(2 \ln 2-2)-(0-1)+\left(e^{5}-10\right)-(2-2 \ln 2) \\
& =e^{5}+4 \ln 2-13 .
\end{aligned}
$$

2. Let $X=\mathbb{R}^{m}$. For any $x=\left(x_{1}, \ldots, x_{m}\right), y=\left(y_{1}, \ldots, y_{m}\right) \in X$, we set

$$
d_{\infty}(x, y):=\max _{k}\left\{\left|x_{k}-y_{k}\right|\right\}
$$

Prove that d_{∞} defines a metric on X.
(M1) and (M2) are obvious and to check (M3) we note that for $x, y, z \in \mathbb{R}^{m}$ one has

$$
\begin{aligned}
d_{\infty}(x, y) & =\max _{1 \leq k \leq n}\left|x_{k}-y_{k}\right|=\max _{1 \leq k \leq n}\left|x_{k}-z_{k}+z_{k}-y_{k}\right| \\
& \leq \max _{1 \leq k \leq n}\left(\left|x_{k}-z_{k}\right|+\left|z_{k}-y_{k}\right|\right) \\
& \leq \max _{1 \leq k \leq n}\left|x_{k}-z_{k}\right|+\max _{1 \leq k \leq n}\left|z_{k}-y_{k}\right| \\
& =d_{\infty}(x, z)+d_{\infty}(z, y) .
\end{aligned}
$$

3. Let (X, d) be a metric space. Define two new functions d_{a} and d_{b} on $X \times X$ by

$$
d_{a}(x, y):=\min \{d(x, y), 1\}, \quad d_{b}(x, y):=\frac{d(x, y)}{1+d(x, y)}, \quad \text { for } \quad x, y \in X
$$

Prove that d_{a} and d_{b} are also metrics on X.

Using (M3) for d, we find

$$
\begin{aligned}
d_{a}(x, y) & =\min \{d(x, y), 1\} \\
& \leq \min \{d(x, z)+d(z, y), 1\} \\
& \leq \min \{d(x, z), 1\}+\min \{d(z, y), 1\} \\
& =d_{a}(x, z)+d_{a}(z, y) .
\end{aligned}
$$

In the inequality of third line one considers the cases (a) $d(x, z) \leq 1$ and $d(z, y) \leq 1$ and (b) when one of these numbers is greater than 1.
Next we observe that the function $f(x)=\frac{x}{1+x}=1-\frac{1}{1+x}$ is monotonically increasing. We therefore find

$$
\begin{aligned}
d_{b}(x, y) & =f(d(x, y)) \leq f(d(x, z)+d(z, y)) \\
& =\frac{d(x, z)}{1+d(x, z)+d(z, y)}+\frac{d(z, y)}{1+d(x, z)+d(z, y)} \\
& \leq \frac{d(x, z)}{1+d(x, z)}+\frac{d(z, y)}{1+d(z, y)} \\
& =d_{b}(x, z)+d_{b}(z, y) .
\end{aligned}
$$

4. We define "the Jungle metric" d_{J} on $X=\mathbb{R}^{2}$ by

$$
d_{J}(x, y):= \begin{cases}\left|x_{2}-y_{2}\right| & \text { if } x_{1}=y_{1} \\ \left|x_{2}\right|+\left|x_{1}-y_{1}\right|+\left|y_{2}\right| & \text { otherwise }\end{cases}
$$

("climb down from the tree, walk to another one, climb up the tree"). Prove that d_{J} defines a metric on X.

Let $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$. Clearly, if $x=y$ then $d_{J}(x, y)=0$. Conversely, if $d_{J}(x, y)=0$ then $x_{1}=y_{1}$ and $x_{2}=y_{2}$, i.e. $x=y$. This proves (M1). The axiom (M2) is obvious.

To check (M3) consider $x, y, z \in \mathbb{R}^{2}$ and assume first that $x_{1} \neq y_{1}, y_{1} \neq z_{1}, x_{1} \neq z_{1}$. Then

$$
\begin{aligned}
d_{J}(x, y) & =\left|x_{2}\right|+\left|y_{2}\right|+\left|x_{1}-y_{1}\right| \\
& \leq\left|x_{2}\right|+\left|y_{2}\right|+\left|x_{1}-z_{1}\right|+\left|z_{1}-y_{1}\right|+2\left|z_{2}\right| \\
& =d_{J}(x, z)+d_{J}(z, y) .
\end{aligned}
$$

If $x_{1}=y_{1}=z_{1}$ then

$$
d_{J}(x, y)=\left|x_{2}-y_{2}\right| \leq\left|x_{2}-z_{2}\right|+\left|z_{2}-y_{2}\right|=d_{J}(x, y)+d_{J}(y, z) .
$$

In the case $x_{1}=y_{1}$ and $z_{1} \neq x_{1}$, we have
$d_{J}(x, y)=\left|x_{2}-y_{2}\right| \leq\left|x_{2}\right|+\left|y_{2}\right|$
$\leq\left|x_{2}\right|+\left|y_{2}\right|+\left|x_{1}-z_{1}\right|+\left|y_{1}-z_{1}\right|+2\left|z_{2}\right|$
$=d_{J}(x, z)+d_{J}(z, y)$.
Finally in the remaining case $z_{1}=x_{1}$ and $x_{1} \neq y_{1}$ we have

$$
\begin{aligned}
& d(x, y)=\left|x_{2}\right|+\left|y_{2}\right|+\left|x_{1}-y_{1}\right| \\
& \leq\left|x_{2}-z_{2}\right|+\left|z_{2}\right|+\left|y_{2}\right|+\left|z_{1}-y_{1}\right| \\
& =d_{J}(x, z)+d_{J}(z, y) .
\end{aligned}
$$

